BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 36123320)

  • 1. NMR Study of Lithium Transport in Liquid-Ceramic Hybrid Solid Composite Electrolytes.
    Foran G; Mery A; Bertrand M; Rousselot S; Lepage D; Aymé-Perrot D; Dollé M
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43226-43236. PubMed ID: 36123320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium-ion spontaneous exchange and synergistic transport in ceramic-liquid hybrid electrolytes for highly efficient lithium-ion transfer.
    Shi K; Chen L; Wan Z; Biao J; Zhong G; Li X; Yang L; Ma J; Lv W; Ren F; Wang H; Yang Y; Kang F; He YB
    Sci Bull (Beijing); 2022 May; 67(9):946-954. PubMed ID: 36546029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Effects of Lithium Phosphorous Oxynitride Coating on Blended Solid Polymer Electrolytes.
    LaCoste J; Li Z; Xu Y; He Z; Matherne D; Zakutayev A; Fei L
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40749-40758. PubMed ID: 32786244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Asymmetric Cross-Linked Ionic Copolymer Hybrid Solid Electrolyte with Super Stretchability for Lithium-Ion Batteries.
    Zhou J; Dong L; Zeng X; Chen L; Wei X; Shi L; Fu J
    Macromol Rapid Commun; 2023 Jan; 44(2):e2200648. PubMed ID: 36153838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing mechanical properties of composite solid electrolyte by ultra-high molecular weight polymers.
    Deng H; He F; Liu T; Ye M; Wan F; Guo X
    Nanotechnology; 2024 Feb; 35(19):. PubMed ID: 38330458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.
    Zhang X; Xie J; Shi F; Lin D; Liu Y; Liu W; Pei A; Gong Y; Wang H; Liu K; Xiang Y; Cui Y
    Nano Lett; 2018 Jun; 18(6):3829-3838. PubMed ID: 29727578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ceramic-Based Composite Solid Electrolyte for Lithium-Ion Batteries.
    Lim YJ; Kim HW; Lee SS; Kim HJ; Kim JK; Jung YG; Kim Y
    Chempluschem; 2015 Jul; 80(7):1100-1103. PubMed ID: 31973285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cycling of block copolymer composites with lithium-conducting ceramic nanoparticles.
    Patel V; Dato MA; Chakraborty S; Jiang X; Chen M; Moy M; Yu X; Maslyn JA; Hu L; Cabana J; Balsara NP
    Front Chem; 2023; 11():1199677. PubMed ID: 37332896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries.
    Bonizzoni S; Ferrara C; Berbenni V; Anselmi-Tamburini U; Mustarelli P; Tealdi C
    Phys Chem Chem Phys; 2019 Mar; 21(11):6142-6149. PubMed ID: 30820495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional Dependence of Li-Ion Conductivity in Garnet-Rich Composite Electrolytes for All-Solid-State Lithium-Ion Batteries-Toward Understanding the Drawbacks of Ceramic-Rich Composites.
    Waidha AI; Ferber T; Donzelli M; Hosseinpourkahvaz N; Vanita V; Dirnberger K; Ludwigs S; Hausbrand R; Jaegermann W; Clemens O
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31111-31128. PubMed ID: 34161723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.
    Liu W; Liu N; Sun J; Hsu PC; Li Y; Lee HW; Cui Y
    Nano Lett; 2015 Apr; 15(4):2740-5. PubMed ID: 25782069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: A Brief Review.
    Morales DJ; Greenbaum S
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEO based polymer-ceramic hybrid solid electrolytes: a review.
    Feng J; Wang L; Chen Y; Wang P; Zhang H; He X
    Nano Converg; 2021 Jan; 8(1):2. PubMed ID: 33426600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-State Electrolytes for Lithium-Sulfur Batteries: Challenges, Progress, and Strategies.
    Zhu Q; Ye C; Mao D
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Impedance Spectroscopy of PEO-LATP Model Multilayers: Ionic Charge Transport and Transfer.
    Isaac JA; Mangani LR; Devaux D; Bouchet R
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13158-13168. PubMed ID: 35258942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Conductive and Thermostable Grafted Polyrotaxane/Ceramic Hybrid Polymer Electrolyte for Solid-State Lithium-Metal Batteries.
    He Y; Li Y; Tong Q; Zhang J; Weng J; Zhu M
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41593-41599. PubMed ID: 34455786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress and Perspective of Glass-Ceramic Solid-State Electrolytes for Lithium Batteries.
    Lin L; Guo W; Li M; Qing J; Cai C; Yi P; Deng Q; Chen W
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling Interfacial Li-Ion Dynamics in Li
    Bonilla MR; García Daza FA; Ranque P; Aguesse F; Carrasco J; Akhmatskaya E
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30653-30667. PubMed ID: 34161063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and electrical properties of NASICON type solid electrolyte nanoscaled glass-ceramic powder by mechanical milling for thin film batteries.
    Patil V; Patil A; Yoon SJ; Choi JW
    J Nanosci Nanotechnol; 2013 May; 13(5):3665-8. PubMed ID: 23858924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.