These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 36123525)
1. The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase. Khelashvili G; Kots E; Cheng X; Levine MV; Weinstein H Commun Biol; 2022 Sep; 5(1):990. PubMed ID: 36123525 [TBL] [Abstract][Full Text] [Related]
2. Regulation of TMEM16A/ANO1 and TMEM16F/ANO6 ion currents and phospholipid scrambling by Ca Schreiber R; Ousingsawat J; Wanitchakool P; Sirianant L; Benedetto R; Reiss K; Kunzelmann K J Physiol; 2018 Jan; 596(2):217-229. PubMed ID: 29134661 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the scrambling domain of the TMEM16 family. Gyobu S; Ishihara K; Suzuki J; Segawa K; Nagata S Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6274-6279. PubMed ID: 28559311 [TBL] [Abstract][Full Text] [Related]
4. Activation of TMEM16F by inner gate charged mutations and possible lipid/ion permeation mechanisms. Jia Z; Huang J; Chen J Biophys J; 2022 Sep; 121(18):3445-3457. PubMed ID: 35978550 [TBL] [Abstract][Full Text] [Related]
5. Single-molecule analysis of phospholipid scrambling by TMEM16F. Watanabe R; Sakuragi T; Noji H; Nagata S Proc Natl Acad Sci U S A; 2018 Mar; 115(12):3066-3071. PubMed ID: 29507235 [TBL] [Abstract][Full Text] [Related]
6. An inner activation gate controls TMEM16F phospholipid scrambling. Le T; Jia Z; Le SC; Zhang Y; Chen J; Yang H Nat Commun; 2019 Apr; 10(1):1846. PubMed ID: 31015464 [TBL] [Abstract][Full Text] [Related]
7. In or out of the groove? Mechanisms of lipid scrambling by TMEM16 proteins. Feng Z; Di Zanni E; Alvarenga O; Chakraborty S; Rychlik N; Accardi A Cell Calcium; 2024 Jul; 121():102896. PubMed ID: 38749289 [TBL] [Abstract][Full Text] [Related]
8. Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase. Lee BC; Khelashvili G; Falzone M; Menon AK; Weinstein H; Accardi A Nat Commun; 2018 Aug; 9(1):3251. PubMed ID: 30108217 [TBL] [Abstract][Full Text] [Related]
9. Structural basis of closed groove scrambling by a TMEM16 protein. Feng Z; Alvarenga OE; Accardi A Nat Struct Mol Biol; 2024 Oct; 31(10):1468-1481. PubMed ID: 38684930 [TBL] [Abstract][Full Text] [Related]
10. Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F. Alvadia C; Lim NK; Clerico Mosina V; Oostergetel GT; Dutzler R; Paulino C Elife; 2019 Feb; 8():. PubMed ID: 30785399 [TBL] [Abstract][Full Text] [Related]
11. TMEM16F and dynamins control expansive plasma membrane reservoirs. Deisl C; Hilgemann DW; Syeda R; Fine M Nat Commun; 2021 Aug; 12(1):4990. PubMed ID: 34404808 [TBL] [Abstract][Full Text] [Related]
12. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Bushell SR; Pike ACW; Falzone ME; Rorsman NJG; Ta CM; Corey RA; Newport TD; Christianson JC; Scofano LF; Shintre CA; Tessitore A; Chu A; Wang Q; Shrestha L; Mukhopadhyay SMM; Love JD; Burgess-Brown NA; Sitsapesan R; Stansfeld PJ; Huiskonen JT; Tammaro P; Accardi A; Carpenter EP Nat Commun; 2019 Sep; 10(1):3956. PubMed ID: 31477691 [TBL] [Abstract][Full Text] [Related]
13. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. Suzuki J; Fujii T; Imao T; Ishihara K; Kuba H; Nagata S J Biol Chem; 2013 May; 288(19):13305-16. PubMed ID: 23532839 [TBL] [Abstract][Full Text] [Related]
14. Atomistic insight into lipid translocation by a TMEM16 scramblase. Bethel NP; Grabe M Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14049-14054. PubMed ID: 27872308 [TBL] [Abstract][Full Text] [Related]
15. Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases. Malvezzi M; Andra KK; Pandey K; Lee BC; Falzone ME; Brown A; Iqbal R; Menon AK; Accardi A Proc Natl Acad Sci U S A; 2018 Jul; 115(30):E7033-E7042. PubMed ID: 29925604 [TBL] [Abstract][Full Text] [Related]
16. Phosphatidylinositol-(4, 5)-bisphosphate regulates calcium gating of small-conductance cation channel TMEM16F. Ye W; Han TW; Nassar LM; Zubia M; Jan YN; Jan LY Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1667-E1674. PubMed ID: 29382763 [TBL] [Abstract][Full Text] [Related]
17. Evidence that polyphenols do not inhibit the phospholipid scramblase TMEM16F. Le T; Le SC; Zhang Y; Liang P; Yang H J Biol Chem; 2020 Aug; 295(35):12537-12544. PubMed ID: 32709749 [TBL] [Abstract][Full Text] [Related]
18. Chemically induced vesiculation as a platform for studying TMEM16F activity. Han TW; Ye W; Bethel NP; Zubia M; Kim A; Li KH; Burlingame AL; Grabe M; Jan YN; Jan LY Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1309-1318. PubMed ID: 30622179 [TBL] [Abstract][Full Text] [Related]
19. Structural mapping of fluorescently-tagged, functional nhTMEM16 scramblase in a lipid bilayer. Andra KK; Dorsey S; Royer CA; Menon AK J Biol Chem; 2018 Aug; 293(31):12248-12258. PubMed ID: 29903908 [TBL] [Abstract][Full Text] [Related]
20. TMEM16 scramblases thin the membrane to enable lipid scrambling. Falzone ME; Feng Z; Alvarenga OE; Pan Y; Lee B; Cheng X; Fortea E; Scheuring S; Accardi A Nat Commun; 2022 May; 13(1):2604. PubMed ID: 35562175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]