BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36123643)

  • 1. Topology-enhanced molecular graph representation for anti-breast cancer drug selection.
    Gao Y; Chen S; Tong J; Fu X
    BMC Bioinformatics; 2022 Sep; 23(1):382. PubMed ID: 36123643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization Method of an Antibreast Cancer Drug Candidate Based on Machine Learning.
    Huang Z; Jiang S; Xiao W
    Comput Math Methods Med; 2022; 2022():4133663. PubMed ID: 36105244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug response prediction using graph representation learning and Laplacian feature selection.
    Xie M; Lei X; Zhong J; Ouyang J; Li G
    BMC Bioinformatics; 2022 Dec; 23(Suppl 8):532. PubMed ID: 36494630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding the protein-ligand interactions using parallel graph neural networks.
    Knutson C; Bontha M; Bilbrey JA; Kumar N
    Sci Rep; 2022 May; 12(1):7624. PubMed ID: 35538084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3DMol-Net: Learn 3D Molecular Representation Using Adaptive Graph Convolutional Network Based on Rotation Invariance.
    Li C; Wei W; Li J; Yao J; Zeng X; Lv Z
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):5044-5054. PubMed ID: 34125693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-target interaction predication via multi-channel graph neural networks.
    Li Y; Qiao G; Wang K; Wang G
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34661237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction.
    Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient Graph Deep Learning to Predict Breast Cancer Molecular Subtype.
    Furtney I; Bradley R; Kabuka MR
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3117-3127. PubMed ID: 37379184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph representation learning in bioinformatics: trends, methods and applications.
    Yi HC; You ZH; Huang DS; Kwoh CK
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34471921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.
    Chereda H; Bleckmann A; Menck K; Perera-Bel J; Stegmaier P; Auer F; Kramer F; Leha A; Beißbarth T
    Genome Med; 2021 Mar; 13(1):42. PubMed ID: 33706810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecule generation toward target protein (SARS-CoV-2) using reinforcement learning-based graph neural network via knowledge graph.
    Ranjan A; Kumar H; Kumari D; Anand A; Misra R
    Netw Model Anal Health Inform Bioinform; 2023; 12(1):13. PubMed ID: 36627927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-type feature fusion based on graph neural network for drug-drug interaction prediction.
    He C; Liu Y; Li H; Zhang H; Mao Y; Qin X; Liu L; Zhang X
    BMC Bioinformatics; 2022 Jun; 23(1):224. PubMed ID: 35689200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.
    Ivanciuc O
    Curr Comput Aided Drug Des; 2013 Jun; 9(2):153-63. PubMed ID: 23701000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction.
    Zhang XC; Wu CK; Yang ZJ; Wu ZX; Yi JC; Hsieh CY; Hou TJ; Cao DS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33951729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating specific and common topologies of heterogeneous graphs and pairwise attributes for drug-related side effect prediction.
    Xuan P; Wang M; Liu Y; Wang D; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35470853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. idse-HE: Hybrid embedding graph neural network for drug side effects prediction.
    Yu L; Cheng M; Qiu W; Xiao X; Lin W
    J Biomed Inform; 2022 Jul; 131():104098. PubMed ID: 35636720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CommPOOL: An interpretable graph pooling framework for hierarchical graph representation learning.
    Tang H; Ma G; He L; Huang H; Zhan L
    Neural Netw; 2021 Nov; 143():669-677. PubMed ID: 34375808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Session Recommendation Model Based on Context-Aware and Gated Graph Neural Networks.
    Li D; Gao Q
    Comput Intell Neurosci; 2021; 2021():7266960. PubMed ID: 34691172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal modeling of anti-breast cancer candidate drugs screening based on multi-model ensemble learning with imbalanced data.
    Zhou J; Li X; Ma Y; Wu Z; Xie Z; Zhang Y; Wei Y
    Math Biosci Eng; 2023 Jan; 20(3):5117-5134. PubMed ID: 36896538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.