BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36124121)

  • 1. Human-Machine Interaction Methods for Minimally Invasive Surgical Robotic Arms.
    Jiang F; Jia R; Jiang X; Cao F; Lei T; Luo L
    Comput Intell Neurosci; 2022; 2022():9434725. PubMed ID: 36124121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery.
    Qi F; Ju F; Bai D; Wang Y; Chen B
    Int J Med Robot; 2018 Dec; 14(6):e1932. PubMed ID: 30003671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot-assisted Percutaneous Transfacet Screw Fixation Supplementing Oblique Lateral Interbody Fusion Procedure: Accuracy and Safety Evaluation of This Novel Minimally Invasive Technique.
    Wu JY; Yuan Q; Liu YJ; Sun YQ; Zhang Y; Tian W
    Orthop Surg; 2019 Feb; 11(1):25-33. PubMed ID: 30776856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. System design and animal experiment study of a novel minimally invasive surgical robot.
    Wang W; Li J; Wang S; Su H; Jiang X
    Int J Med Robot; 2016 Mar; 12(1):73-84. PubMed ID: 25914384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Survey on Force Sensing Techniques in Robot-Assisted Minimally Invasive Surgery.
    Wang W; Wang J; Luo Y; Wang X; Song H
    IEEE Trans Haptics; 2023; 16(4):702-718. PubMed ID: 37922188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fuzzy neural network sliding mode controller for vibration suppression in robotically assisted minimally invasive surgery.
    Sang H; Yang C; Liu F; Yun J; Jin G
    Int J Med Robot; 2016 Dec; 12(4):670-679. PubMed ID: 27921372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External force estimation and implementation in robotically assisted minimally invasive surgery.
    Sang H; Yun J; Monfaredi R; Wilson E; Fooladi H; Cleary K
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 28466997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pose optimization and port placement for robot-assisted minimally invasive surgery in cholecystectomy.
    Feng M; Jin X; Tong W; Guo X; Zhao J; Fu Y
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28251840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-assisted Minimally-invasive Internal Fixation of Pelvic Ring Injuries: A Single-center Experience.
    Liu HS; Duan SJ; Xin FZ; Zhang Z; Wang XG; Liu SD
    Orthop Surg; 2019 Feb; 11(1):42-51. PubMed ID: 30714333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vision-based hand-eye calibration for robot-assisted minimally invasive surgery.
    Sun Y; Pan B; Guo Y; Fu Y; Niu G
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2061-2069. PubMed ID: 32808149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator.
    Du Z; Wang W; Yan Z; Dong W; Wang W
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28417944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-Aided Minimally Invasive Lumbopelvic Fixation in Treatment of Traumatic Spinopelvic Dissociation.
    Liu ZJ; Hu YC; Tian W; Jin X; Qi HT; Sun YX; Jia J
    Orthop Surg; 2021 Apr; 13(2):563-572. PubMed ID: 33665983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Force-Feedback Methodology for Teleoperated Suturing Task in Robotic-Assisted Minimally Invasive Surgery.
    Ehrampoosh A; Shirinzadeh B; Pinskier J; Smith J; Moshinsky R; Zhong Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preoperative positioning planning for a robot-assisted minimally invasive surgical system based on accuracy and safety.
    Su P; Li J; Yue C; Liu T; Liu B; Li J
    Int J Med Robot; 2022 Aug; 18(4):e2405. PubMed ID: 35445793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current perspectives in robot-assisted surgery.
    Binet A; Ballouhey Q; Chaussy Y; de Lambert G; Braïk K; Villemagne T; Becmeur F; Fourcade L; Lardy H
    Minerva Pediatr; 2018 Jun; 70(3):308-314. PubMed ID: 29479943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of surgical outcomes between open and robot-assisted minimally invasive pancreaticoduodenectomy.
    Kim HS; Han Y; Kang JS; Kim H; Kim JR; Kwon W; Kim SW; Jang JY
    J Hepatobiliary Pancreat Sci; 2018 Feb; 25(2):142-149. PubMed ID: 29117639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimally Invasive Surgery to Treat Gynecological Cancer: Conventional Laparoscopy and/or Robot-Assisted Surgery.
    Minig L; Achilarre MT; Garbi A; Zanagnolo V
    Int J Gynecol Cancer; 2017 Mar; 27(3):562-574. PubMed ID: 28187093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.