These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36124607)

  • 21. An analytical modeling with experimental validation of bone temperature rise in drilling process.
    Amewoui F; Le Coz G; Bonnet AS; Moufki A
    Med Eng Phys; 2020 Oct; 84():151-160. PubMed ID: 32977912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of fracture, force, and temperature in orthogonal elliptical vibration-assisted bone cutting.
    Shu L; Sugita N
    J Mech Behav Biomed Mater; 2020 Mar; 103():103599. PubMed ID: 32090928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal parameters to avoid thermal necrosis during bone drilling: A finite element analysis.
    Mediouni M; Schlatterer DR; Khoury A; Von Bergen T; Shetty SH; Arora M; Dhond A; Vaughan N; Volosnikov A
    J Orthop Res; 2017 Nov; 35(11):2386-2391. PubMed ID: 28181707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduction thermal damage to cortical bone using ultrasonically-assisted drilling.
    Zheng Q; Xia L; Zhang X; Zhang C; Hu Y
    Technol Health Care; 2018; 26(5):843-856. PubMed ID: 30103355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A neural network framework for immediate temperature prediction of surgical hand-held drilling.
    Kung PC; Heydari M; Tsou NT; Tai BL
    Comput Methods Programs Biomed; 2023 Jun; 235():107524. PubMed ID: 37060686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating the effect of micro-lubrication in orthopedic drilling.
    Jamil M; Khan AM; Mia M; Iqbal A; Gupta MK; Sen B
    Proc Inst Mech Eng H; 2019 Oct; 233(10):1024-1041. PubMed ID: 31347443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental and numerical investigation of cracking behavior of cortical bone in cutting.
    Alam K
    Technol Health Care; 2014; 22(5):741-50. PubMed ID: 25097063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A predictive model for cortical bone temperature distribution during drilling.
    Hu Y; Ding H; Shi Y; Zhang H; Zheng Q
    Phys Eng Sci Med; 2021 Mar; 44(1):147-156. PubMed ID: 33459995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.
    Tahmasbi V; Ghoreishi M; Zolfaghari M
    Proc Inst Mech Eng H; 2017 Nov; 231(11):1012-1024. PubMed ID: 28803514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of Cutting Process Parameters in Inclined Drilling of Inconel 718 Using Finite Element Method and Taguchi Analysis.
    Pervaiz S; Kannan S; Subramaniam A
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32916998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of cutting mechanics and modeling techniques for biological materials.
    Takabi B; Tai BL
    Med Eng Phys; 2017 Jul; 45():1-14. PubMed ID: 28457593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of non-Fourier bioheat transfer on bone drilling temperature in orthopedic surgery: Theoretical and in vitro experimental investigation.
    Kabiri A; Talaee MR
    Proc Inst Mech Eng H; 2022 Jun; 236(6):811-824. PubMed ID: 35486132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone.
    Gupta V; Pandey PM; Gupta RK; Mridha AR
    Proc Inst Mech Eng H; 2017 Mar; 231(3):189-196. PubMed ID: 28116985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling Evolution of Cutting Force in Ultrasonically Assisted Drilling of Carbon Fiber Reinforced Plastics.
    Huang CR; Liao BM; Kai CY; Su CM; Hung JP
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical evaluation of sequential bone drilling strategies based on thermal damage.
    Tai BL; Palmisano AC; Belmont B; Irwin TA; Holmes J; Shih AJ
    Med Eng Phys; 2015 Sep; 37(9):855-61. PubMed ID: 26163230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical model of orthopaedic drilling for augmented-haptics-based training.
    Pourkand A; Zamani N; Grow D
    Comput Biol Med; 2017 Oct; 89():256-263. PubMed ID: 28843830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of process parameters on the temperature changes during robotic bone drilling.
    Han Y; Cai C; Lv Q; Song Y; Zhang Q
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1129-1138. PubMed ID: 35821641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-vitro experimental analysis and numerical study of temperature in bone drilling.
    Alam K; Khan M; Muhammad R; Qamar SZ; Silberschmidt VV
    Technol Health Care; 2015; 23(6):775-83. PubMed ID: 26409522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental investigation and statistical modeling of temperature rise in rotary ultrasonic bone drilling.
    Gupta V; Pandey PM
    Med Eng Phys; 2016 Nov; 38(11):1330-1338. PubMed ID: 27639655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orthogonal cutting of cancellous bone with application to the harvesting of bone autograft.
    Malak SF; Anderson IA
    Med Eng Phys; 2008 Jul; 30(6):717-24. PubMed ID: 17825598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.