These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Reinvestigating the Correctness of Decoy-Based False Discovery Rate Control in Proteomics Tandem Mass Spectrometry. Freestone J; Noble WS; Keich U J Proteome Res; 2024 Jun; 23(6):1907-1914. PubMed ID: 38687997 [TBL] [Abstract][Full Text] [Related]
7. An algorithm for decoy-free false discovery rate estimation in XL-MS/MS proteomics. Peng Y; Jain S; Radivojac P Bioinformatics; 2024 Jun; 40(Suppl 1):i428-i436. PubMed ID: 38940171 [TBL] [Abstract][Full Text] [Related]
8. Unveiling the Links Between Peptide Identification and Differential Analysis FDR Controls by Means of a Practical Introduction to Knockoff Filters. Etourneau L; Varoquaux N; Burger T Methods Mol Biol; 2023; 2426():1-24. PubMed ID: 36308682 [TBL] [Abstract][Full Text] [Related]
9. Knockoff boosted tree for model-free variable selection. Jiang T; Li Y; Motsinger-Reif AA Bioinformatics; 2021 May; 37(7):976-983. PubMed ID: 32966559 [TBL] [Abstract][Full Text] [Related]
10. Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy? Keich U; Noble WS Res Comput Mol Biol; 2017 May; 10229():99-116. PubMed ID: 29326989 [TBL] [Abstract][Full Text] [Related]
12. New mixture models for decoy-free false discovery rate estimation in mass spectrometry proteomics. Peng Y; Jain S; Li YF; Greguš M; Ivanov AR; Vitek O; Radivojac P Bioinformatics; 2020 Dec; 36(Suppl_2):i745-i753. PubMed ID: 33381824 [TBL] [Abstract][Full Text] [Related]
13. Challenging Targets or Describing Mismatches? A Comment on Common Decoy Distribution by Madej et al. Etourneau L; Burger T J Proteome Res; 2022 Dec; 21(12):2840-2845. PubMed ID: 36305797 [TBL] [Abstract][Full Text] [Related]
14. Beyond Target-Decoy Competition: Stable Validation of Peptide and Protein Identifications in Mass Spectrometry-Based Discovery Proteomics. Couté Y; Bruley C; Burger T Anal Chem; 2020 Nov; 92(22):14898-14906. PubMed ID: 32970414 [TBL] [Abstract][Full Text] [Related]
15. Reanalysis of ProteomicsDB Using an Accurate, Sensitive, and Scalable False Discovery Rate Estimation Approach for Protein Groups. The M; Samaras P; Kuster B; Wilhelm M Mol Cell Proteomics; 2022 Dec; 21(12):100437. PubMed ID: 36328188 [TBL] [Abstract][Full Text] [Related]
16. False discovery rate estimation using candidate peptides for each spectrum. Lee S; Park H; Kim H BMC Bioinformatics; 2022 Nov; 23(1):454. PubMed ID: 36319948 [TBL] [Abstract][Full Text] [Related]
18. Decoy methods for assessing false positives and false discovery rates in shotgun proteomics. Wang G; Wu WW; Zhang Z; Masilamani S; Shen RF Anal Chem; 2009 Jan; 81(1):146-59. PubMed ID: 19061407 [TBL] [Abstract][Full Text] [Related]
19. Transferred subgroup false discovery rate for rare post-translational modifications detected by mass spectrometry. Fu Y; Qian X Mol Cell Proteomics; 2014 May; 13(5):1359-68. PubMed ID: 24200586 [TBL] [Abstract][Full Text] [Related]
20. A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets. Savitski MM; Wilhelm M; Hahne H; Kuster B; Bantscheff M Mol Cell Proteomics; 2015 Sep; 14(9):2394-404. PubMed ID: 25987413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]