These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 36124788)

  • 1. PiLSL: pairwise interaction learning-based graph neural network for synthetic lethality prediction in human cancers.
    Liu X; Yu J; Tao S; Yang B; Wang S; Wang L; Bai F; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii106-ii112. PubMed ID: 36124788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers.
    Wang S; Xu F; Li Y; Wang J; Zhang K; Liu Y; Wu M; Zheng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i418-i425. PubMed ID: 34252965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality.
    Zhang K; Wu M; Liu Y; Feng Y; Zheng J
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i158-i167. PubMed ID: 37387166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network.
    Zhu Y; Zhou Y; Liu Y; Wang X; Li J
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36645245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NSF4SL: negative-sample-free contrastive learning for ranking synthetic lethal partner genes in human cancers.
    Wang S; Feng Y; Liu X; Liu Y; Wu M; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii13-ii19. PubMed ID: 36124790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MPASL: multi-perspective learning knowledge graph attention network for synthetic lethality prediction in human cancer.
    Zhang G; Chen Y; Yan C; Wang J; Liang W; Luo J; Luo H
    Front Pharmacol; 2024; 15():1398231. PubMed ID: 38835667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph contextualized attention network for predicting synthetic lethality in human cancers.
    Long Y; Wu M; Liu Y; Zheng J; Kwoh CK; Luo J; Li X
    Bioinformatics; 2021 Aug; 37(16):2432-2440. PubMed ID: 33609108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Synthetic Lethality in Human Cancers via Multi-Graph Ensemble Neural Network.
    Lai M; Chen G; Yang H; Yang J; Jiang Z; Wu M; Zheng J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1731-1734. PubMed ID: 34891621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-view graph convolutional network for cancer cell-specific synthetic lethality prediction.
    Fan K; Tang S; Gökbağ B; Cheng L; Li L
    Front Genet; 2022; 13():1103092. PubMed ID: 36699450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers.
    Cai R; Chen X; Fang Y; Wu M; Hao Y
    Bioinformatics; 2020 Aug; 36(16):4458-4465. PubMed ID: 32221609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SL-Miner: a web server for mining evidence and prioritization of cancer-specific synthetic lethality.
    Liu X; Hu J; Zheng J
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38244572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting ncRNA-protein interactions based on dual graph convolutional network and pairwise learning.
    Zhuo L; Song B; Liu Y; Li Z; Fu X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36063562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Synthetic Lethal Interactions in Human Cancers Using Multi-View Graph Auto-Encoder.
    Hao Z; Wu D; Fang Y; Wu M; Cai R; Li X
    IEEE J Biomed Health Inform; 2021 Oct; 25(10):4041-4051. PubMed ID: 33974548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overcoming selection bias in synthetic lethality prediction.
    Seale C; Tepeli Y; Gonçalves JP
    Bioinformatics; 2022 Sep; 38(18):4360-4368. PubMed ID: 35876858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FuseLinker: Leveraging LLM's pre-trained text embeddings and domain knowledge to enhance GNN-based link prediction on biomedical knowledge graphs.
    Xiao Y; Zhang S; Zhou H; Li M; Yang H; Zhang R
    J Biomed Inform; 2024 Oct; 158():104730. PubMed ID: 39326691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SL
    Liu Y; Wu M; Liu C; Li XL; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):748-757. PubMed ID: 30969932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Heterogeneous Networks Representation With Latent Space for Synthetic Lethality Prediction.
    Hu X; Yi H; Cheng H; Zhao Y; Zhang D; Li J; Ruan J; Zhang J; Lu X
    IEEE Trans Nanobioscience; 2024 Oct; 23(4):564-571. PubMed ID: 39150817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization.
    Huang J; Wu M; Lu F; Ou-Yang L; Zhu Z
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):657. PubMed ID: 31870274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using graph-based model to identify cell specific synthetic lethal effects.
    Pu M; Cheng K; Li X; Xin Y; Wei L; Jin S; Zheng W; Peng G; Tang Q; Zhou J; Zhang Y
    Comput Struct Biotechnol J; 2023; 21():5099-5110. PubMed ID: 37920819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.