BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36124794)

  • 1. Improved NSGA-II algorithms for multi-objective biomarker discovery.
    Cattelani L; Fortino V
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii20-ii26. PubMed ID: 36124794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature set optimization in biomarker discovery from genome-scale data.
    Fortino V; Scala G; Greco D
    Bioinformatics; 2020 Jun; 36(11):3393-3400. PubMed ID: 32119073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying interactions in omics data for clinical biomarker discovery using symbolic regression.
    Christensen NJ; Demharter S; Machado M; Pedersen L; Salvatore M; Stentoft-Hansen V; Iglesias MT
    Bioinformatics; 2022 Aug; 38(15):3749-3758. PubMed ID: 35731214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying gene expression-based biomarkers in online learning environments.
    Cattelani L; Fortino V
    Bioinform Adv; 2022; 2(1):vbac074. PubMed ID: 36699355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VSOLassoBag: a variable-selection oriented LASSO bagging algorithm for biomarker discovery in omic-based translational research.
    Liang J; Wang C; Zhang D; Xie Y; Zeng Y; Li T; Zuo Z; Ren J; Zhao Q
    J Genet Genomics; 2023 Mar; 50(3):151-162. PubMed ID: 36608930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient non-dominated sorting method for evolutionary algorithms.
    Fang H; Wang Q; Tu YC; Horstemeyer MF
    Evol Comput; 2008; 16(3):355-84. PubMed ID: 18811246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NIAPU: network-informed adaptive positive-unlabeled learning for disease gene identification.
    Stolfi P; Mastropietro A; Pasculli G; Tieri P; Vergni D
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36727493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. muSignAl: An algorithm to search for multiple omic signatures with similar predictive performance.
    Prasad B; Bjourson AJ; Shukla P
    Proteomics; 2023 Jan; 23(2):e2200252. PubMed ID: 36076312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic algorithms applied to multi-class prediction for the analysis of gene expression data.
    Ooi CH; Tan P
    Bioinformatics; 2003 Jan; 19(1):37-44. PubMed ID: 12499291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph-based molecular Pareto optimisation.
    Verhellen J
    Chem Sci; 2022 Jun; 13(25):7526-7535. PubMed ID: 35872811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised topological alignment for single-cell multi-omics integration.
    Cao K; Bai X; Hong Y; Wan L
    Bioinformatics; 2020 Jul; 36(Suppl_1):i48-i56. PubMed ID: 32657382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MEvA-X: a hybrid multiobjective evolutionary tool using an XGBoost classifier for biomarkers discovery on biomedical datasets.
    Panagiotopoulos K; Korfiati A; Theofilatos K; Hurwitz P; Deriu MA; Mavroudi S
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37326976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ASTRAL-Pro 2: ultrafast species tree reconstruction from multi-copy gene family trees.
    Zhang C; Mirarab S
    Bioinformatics; 2022 Oct; 38(21):4949-4950. PubMed ID: 36094339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MaNGA: a novel multi-niche multi-objective genetic algorithm for QSAR modelling.
    Serra A; Önlü S; Festa P; Fortino V; Greco D
    Bioinformatics; 2020 Jan; 36(1):145-153. PubMed ID: 31233136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-based clustering of multi-tissue gene expression data.
    Erola P; Björkegren JLM; Michoel T
    Bioinformatics; 2020 Mar; 36(6):1807-1813. PubMed ID: 31688915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning.
    Gönen M; Margolin AA
    Bioinformatics; 2014 Sep; 30(17):i556-63. PubMed ID: 25161247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TeraPCA: a fast and scalable software package to study genetic variation in tera-scale genotypes.
    Bose A; Kalantzis V; Kontopoulou EM; Elkady M; Paschou P; Drineas P
    Bioinformatics; 2019 Oct; 35(19):3679-3683. PubMed ID: 30957838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and interpretable genomic data analysis using multiple approximate kernel learning.
    Bektaş AB; Ak Ç; Gönen M
    Bioinformatics; 2022 Jun; 38(Suppl 1):i77-i83. PubMed ID: 35758810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. YAMDA: thousandfold speedup of EM-based motif discovery using deep learning libraries and GPU.
    Quang D; Guan Y; Parker SCJ
    Bioinformatics; 2018 Oct; 34(20):3578-3580. PubMed ID: 29790915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.