BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36124794)

  • 21. Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non-dominated sorting genetic algorithm.
    Yang Y; Fritzsching KJ; Hong M
    J Biomol NMR; 2013 Nov; 57(3):281-96. PubMed ID: 24132778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference.
    Kozlov AM; Darriba D; Flouri T; Morel B; Stamatakis A
    Bioinformatics; 2019 Nov; 35(21):4453-4455. PubMed ID: 31070718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. OpenBioLink: a benchmarking framework for large-scale biomedical link prediction.
    Breit A; Ott S; Agibetov A; Samwald M
    Bioinformatics; 2020 Jul; 36(13):4097-4098. PubMed ID: 32339214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust clustering of noisy high-dimensional gene expression data for patients subtyping.
    Coretto P; Serra A; Tagliaferri R
    Bioinformatics; 2018 Dec; 34(23):4064-4072. PubMed ID: 29939219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A module classification method for light industrial equipment based on improved NSGA2-FCM algorithm.
    Zheng H; Guo H; Pang T; Guo Z; Guo X
    Sci Rep; 2023 Aug; 13(1):13789. PubMed ID: 37612438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MASCOT: parameter and state inference under the marginal structured coalescent approximation.
    Müller NF; Rasmussen D; Stadler T
    Bioinformatics; 2018 Nov; 34(22):3843-3848. PubMed ID: 29790921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DTMiner: identification of potential disease targets through biomedical literature mining.
    Xu D; Zhang M; Xie Y; Wang F; Chen M; Zhu KQ; Wei J
    Bioinformatics; 2016 Dec; 32(23):3619-3626. PubMed ID: 27506226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrating biological knowledge and gene expression data using pathway-guided random forests: a benchmarking study.
    Seifert S; Gundlach S; Junge O; Szymczak S
    Bioinformatics; 2020 Aug; 36(15):4301-4308. PubMed ID: 32399562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IntelliGenes: a novel machine learning pipeline for biomarker discovery and predictive analysis using multi-genomic profiles.
    DeGroat W; Mendhe D; Bhusari A; Abdelhalim H; Zeeshan S; Ahmed Z
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38096588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Multi-Objective Optimization Algorithms for NMR Chemical Shift Assignment.
    Maden Yılmaz E; Güntert P; Etaner-Uyar Ş
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34204416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic test bed for feature selection.
    Choudhary A; Brun M; Hua J; Lowey J; Suh E; Dougherty ER
    Bioinformatics; 2006 Apr; 22(7):837-42. PubMed ID: 16428263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A pairwise strategy for imputing predictive features when combining multiple datasets.
    Wu Y; Ren B; Patil P
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36576001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MetaKTSP: a meta-analytic top scoring pair method for robust cross-study validation of omics prediction analysis.
    Kim S; Lin CW; Tseng GC
    Bioinformatics; 2016 Jul; 32(13):1966-73. PubMed ID: 27153719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MAGUS: Multiple sequence Alignment using Graph clUStering.
    Smirnov V; Warnow T
    Bioinformatics; 2021 Jul; 37(12):1666-1672. PubMed ID: 33252662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feature selection may improve deep neural networks for the bioinformatics problems.
    Chen Z; Pang M; Zhao Z; Li S; Miao R; Zhang Y; Feng X; Feng X; Zhang Y; Duan M; Huang L; Zhou F
    Bioinformatics; 2020 Mar; 36(5):1542-1552. PubMed ID: 31591638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models.
    Jalali-Najafabadi F; Stadler M; Dand N; Jadon D; Soomro M; Ho P; Marzo-Ortega H; Helliwell P; Korendowych E; Simpson MA; Packham J; Smith CH; Barker JN; McHugh N; Warren RB; Barton A; Bowes J; ;
    Sci Rep; 2021 Dec; 11(1):23335. PubMed ID: 34857774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contrastive representation learning of inorganic materials to overcome lack of training datasets.
    Na GS; Kim HW
    Chem Commun (Camb); 2022 Jun; 58(47):6729-6732. PubMed ID: 35604356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RGIFE: a ranked guided iterative feature elimination heuristic for the identification of biomarkers.
    Lazzarini N; Bacardit J
    BMC Bioinformatics; 2017 Jun; 18(1):322. PubMed ID: 28666416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods.
    Li L; Ching WK; Liu ZP
    Comput Biol Chem; 2022 Oct; 100():107747. PubMed ID: 35932551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NEMO: cancer subtyping by integration of partial multi-omic data.
    Rappoport N; Shamir R
    Bioinformatics; 2019 Sep; 35(18):3348-3356. PubMed ID: 30698637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.