These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36125328)

  • 1. From symmetry breaking in the bulk to phase transitions at the surface: a quantum-mechanical exploration of Li
    D'Amore M; Daga LE; Rocca R; Sgroi MF; Marana NL; Casassa SM; Maschio L; Ferrari AM
    Phys Chem Chem Phys; 2022 Sep; 24(37):22978-22986. PubMed ID: 36125328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.
    Yu C; Ganapathy S; de Klerk NJ; Roslon I; van Eck ER; Kentgens AP; Wagemaker M
    J Am Chem Soc; 2016 Sep; 138(35):11192-201. PubMed ID: 27511442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular-Level Insight into the Interfacial Reactivity and Ionic Conductivity of a Li-Argyrodite Li
    Golov A; Carrasco J
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43734-43745. PubMed ID: 34469118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cl- and Al-Doped Argyrodite Solid Electrolyte Li
    Choi YJ; Kim SI; Son M; Lee JW; Lee DH
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Conductivity Argyrodite Li
    Wang S; Zhang Y; Zhang X; Liu T; Lin YH; Shen Y; Li L; Nan CW
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42279-42285. PubMed ID: 30451491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li
    Yu C; Ganapathy S; Hageman J; van Eijck L; van Eck ERH; Zhang L; Schwietert T; Basak S; Kelder EM; Wagemaker M
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33296-33306. PubMed ID: 30199216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic and Electronic Conductivities of Lithium Argyrodite Li
    Lee JM; Park YS; Moon JW; Hwang H
    Front Chem; 2021; 9():778057. PubMed ID: 34976950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon-Doped Argyrodite Solid Electrolyte Li
    Zhang J; Li L; Zheng C; Xia Y; Gan Y; Huang H; Liang C; He X; Tao X; Zhang W
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41538-41545. PubMed ID: 32822167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium Superionic Conduction in BH
    Jang YJ; Seo H; Lee YS; Kang S; Cho W; Cho YW; Kim JH
    Adv Sci (Weinh); 2023 Feb; 10(5):e2204942. PubMed ID: 36507619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Low-Cost Liquid-Phase Method of Synthesizing High-Performance Li
    Han A; Tian R; Fang L; Wan F; Hu X; Zhao Z; Tu F; Song D; Zhang X; Yang Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):30824-30838. PubMed ID: 35785989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the Performance Limits of the Li7P3S11 Superionic Conductor: A Combined First-Principles and Experimental Study.
    Chu IH; Nguyen H; Hy S; Lin YC; Wang Z; Xu Z; Deng Z; Meng YS; Ong SP
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7843-53. PubMed ID: 26950604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries.
    Lin Z; Liu Z; Dudney NJ; Liang C
    ACS Nano; 2013 Mar; 7(3):2829-33. PubMed ID: 23427822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Li
    Strauss F; Zinkevich T; Indris S; Brezesinski T
    Inorg Chem; 2020 Sep; 59(17):12954-12959. PubMed ID: 32794736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of surface carbonates on the cyclability of LiNbO
    Kim AY; Strauss F; Bartsch T; Teo JH; Janek J; Brezesinski T
    Sci Rep; 2021 Mar; 11(1):5367. PubMed ID: 33686168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of the Interphase Formed between Argyrodite-Type Li
    Simon FJ; Hanauer M; Henss A; Richter FH; Janek J
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42186-42196. PubMed ID: 31613597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a Solid-Electrolyte Inductive Effect in the Superionic Conductor Li
    Culver SP; Squires AG; Minafra N; Armstrong CWF; Krauskopf T; Böcher F; Li C; Morgan BJ; Zeier WG
    J Am Chem Soc; 2020 Dec; 142(50):21210-21219. PubMed ID: 33284622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.
    Wu JF; Pang WK; Peterson VK; Wei L; Guo X
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forced Disorder in the Solid Solution Li
    Szczuka C; Karasulu B; Groh MF; Sayed FN; Sherman TJ; Bocarsly JD; Vema S; Menkin S; Emge SP; Morris AJ; Grey CP
    J Am Chem Soc; 2022 Sep; 144(36):16350-16365. PubMed ID: 36040461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.