These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36125328)

  • 41. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte.
    Wang X; Xiao R; Li H; Chen L
    Phys Chem Chem Phys; 2016 Aug; 18(31):21269-77. PubMed ID: 27432279
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Argyrodite-type advanced lithium conductors and transport mechanisms beyond peddle-wheel effect.
    Fang H; Jena P
    Nat Commun; 2022 Apr; 13(1):2078. PubMed ID: 35440663
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Superionic Conductors
    Hu C; Shen Y; Shen M; Liu X; Chen H; Liu C; Kang T; Jin F; Li L; Li J; Li Y; Zhao N; Guo X; Lu W; Hu B; Chen L
    J Am Chem Soc; 2020 Oct; 142(42):18035-18041. PubMed ID: 32986953
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Li-rich antiperovskite superionic conductors based on cluster ions.
    Fang H; Jena P
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11046-11051. PubMed ID: 28973929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Li2S Film Formation on Lithium Anode Surface of Li-S batteries.
    Liu Z; Bertolini S; Balbuena PB; Mukherjee PP
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4700-8. PubMed ID: 26836249
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution.
    Adeli P; Bazak JD; Park KH; Kochetkov I; Huq A; Goward GR; Nazar LF
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8681-8686. PubMed ID: 31041839
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Dual-Crosslinking Design for Resilient Lithium-Ion Conductors.
    Lopez J; Sun Y; Mackanic DG; Lee M; Foudeh AM; Song MS; Cui Y; Bao Z
    Adv Mater; 2018 Oct; 30(43):e1804142. PubMed ID: 30199111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sn-Substituted Argyrodite Li
    Kang SG; Kim DH; Kim BJ; Yoon CB
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049045
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of Fluorine-Doped Lithium Argyrodite Solid Electrolytes for Solid-State Lithium Metal Batteries.
    Arnold W; Shreyas V; Li Y; Koralalage MK; Jasinski JB; Thapa A; Sumanasekera G; Ngo AT; Narayanan B; Wang H
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11483-11492. PubMed ID: 35195393
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antiperovskite Li
    Lü X; Howard JW; Chen A; Zhu J; Li S; Wu G; Dowden P; Xu H; Zhao Y; Jia Q
    Adv Sci (Weinh); 2016 Mar; 3(3):1500359. PubMed ID: 27812460
    [No Abstract]   [Full Text] [Related]  

  • 52. Understanding the Origin of Enhanced Li-Ion Transport in Nanocrystalline Argyrodite-Type Li
    Brinek M; Hiebl C; Wilkening HMR
    Chem Mater; 2020 Jun; 32(11):4754-4766. PubMed ID: 32565618
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Na superionic conductor-type LiZr
    Nakayama M; Nakano K; Harada M; Tanibata N; Takeda H; Noda Y; Kobayashi R; Karasuyama M; Takeuchi I; Kotobuki M
    Chem Commun (Camb); 2022 Aug; 58(67):9328-9340. PubMed ID: 35950409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect.
    Deng Y; Eames C; Fleutot B; David R; Chotard JN; Suard E; Masquelier C; Islam MS
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7050-7058. PubMed ID: 28128548
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design principles for solid-state lithium superionic conductors.
    Wang Y; Richards WD; Ong SP; Miara LJ; Kim JC; Mo Y; Ceder G
    Nat Mater; 2015 Oct; 14(10):1026-31. PubMed ID: 26280225
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation of Glass-Ceramic Lithium Thiophosphate Solid Electrolytes Using NMR and Neutron Scattering.
    Self EC; Chien PH; O'Donnell LF; Morales D; Liu J; Brahmbhatt T; Greenbaum S; Nanda J
    Mater Today Phys; 2021 Nov; 21():. PubMed ID: 35425888
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anomalously High Ionic Conductivity of Li
    Huang W; Matsui N; Hori S; Suzuki K; Hirayama M; Yonemura M; Saito T; Kamiyama T; Sasaki Y; Yoon Y; Kim S; Kanno R
    J Am Chem Soc; 2022 Mar; 144(11):4989-4994. PubMed ID: 35138083
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ionic Conduction through Reaction Products at the Electrolyte-Electrode Interface in All-Solid-State Li
    Wang C; Aoyagi K; Aykol M; Mueller T
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55510-55519. PubMed ID: 33258370
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stable and Flexible Sulfide Composite Electrolyte for High-Performance Solid-State Lithium Batteries.
    Li Y; Arnold W; Thapa A; Jasinski JB; Sumanasekera G; Sunkara M; Druffel T; Wang H
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42653-42659. PubMed ID: 32845121
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel sulfur-doped single-ion conducting multi-block copolymer electrolyte.
    Mayer A; Ates T; Varzi A; Passerini S; Bresser D
    Front Chem; 2022; 10():974202. PubMed ID: 36082201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.