These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36125371)

  • 61. A Highly Efficient Heterogeneous Catalyst of Bimetal-Organic Frameworks for the Epoxidation of Olefin with H
    Wang F; Meng XG; Wu YY; Huang H; Lv J; Yu WW
    Molecules; 2020 May; 25(10):. PubMed ID: 32455583
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Highly Porous Metalloporphyrin Covalent Ionic Frameworks with Well-Defined Cooperative Functional Groups as Excellent Catalysts for CO
    Liu J; Zhao G; Cheung O; Jia L; Sun Z; Zhang S
    Chemistry; 2019 Jul; 25(38):9052-9059. PubMed ID: 30997700
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Emerging Dual-Atomic-Site Catalysts for Efficient Energy Catalysis.
    Zhang W; Chao Y; Zhang W; Zhou J; Lv F; Wang K; Lin F; Luo H; Li J; Tong M; Wang E; Guo S
    Adv Mater; 2021 Sep; 33(36):e2102576. PubMed ID: 34296795
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Single-Atom Catalysis toward Efficient CO
    Su X; Yang XF; Huang Y; Liu B; Zhang T
    Acc Chem Res; 2019 Mar; 52(3):656-664. PubMed ID: 30512920
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Co-Catalyst-Free Chemical Fixation of CO
    Singh Dhankhar S; Ugale B; Nagaraja CM
    Chem Asian J; 2020 Aug; 15(16):2403-2427. PubMed ID: 32524760
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effectively Regulating the Microenvironment of Atomically Dispersed Rh through Co and Pi to Promote the Selectivity in Olefin Hydroformylation.
    Wei B; Liu X; Hua K; Deng Y; Wang H; Sun Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15113-15121. PubMed ID: 33757285
    [TBL] [Abstract][Full Text] [Related]  

  • 67. First success of catalytic epoxidation of olefins by an electron-rich iron(III) porphyrin complex and H2O2: imidazole effect on the activation of H2O2 by iron porphyrin complexes in aprotic solvent.
    Nam W; Lee HJ; Oh SY; Kim C; Jang HG
    J Inorg Biochem; 2000 Jul; 80(3-4):219-25. PubMed ID: 11001092
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fe
    Hu Z; Li X; Zhang S; Li Q; Fan J; Qu X; Lv K
    Small; 2020 Nov; 16(47):e2004583. PubMed ID: 33111466
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fe-doped H
    Yu D; Gao W; Xing S; Lian L; Zhang H; Wang X; Lou D
    RSC Adv; 2019 Feb; 9(9):4884-4891. PubMed ID: 35514611
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Main-Group Catalysts with Atomically Dispersed In Sites for Highly Efficient Oxidative Dehydrogenation.
    Wang C; Han Y; Tian M; Li L; Lin J; Wang X; Zhang T
    J Am Chem Soc; 2022 Sep; 144(37):16855-16865. PubMed ID: 36006855
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond.
    Sun W; Sun Q
    Acc Chem Res; 2019 Aug; 52(8):2370-2381. PubMed ID: 31333021
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Polyoxovanadate-Resorcin[4]arene-Based Porous Metal-Organic Framework as an Efficient Multifunctional Catalyst for the Cycloaddition of CO
    Lu BB; Yang J; Liu YY; Ma JF
    Inorg Chem; 2017 Oct; 56(19):11710-11720. PubMed ID: 28915013
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity.
    Yang G; Zhu J; Yuan P; Hu Y; Qu G; Lu BA; Xue X; Yin H; Cheng W; Cheng J; Xu W; Li J; Hu J; Mu S; Zhang JN
    Nat Commun; 2021 Mar; 12(1):1734. PubMed ID: 33741940
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Triazole-Containing Metal-Organic Framework as a Highly Effective and Substrate Size-Dependent Catalyst for CO2 Conversion.
    Li PZ; Wang XJ; Liu J; Lim JS; Zou R; Zhao Y
    J Am Chem Soc; 2016 Feb; 138(7):2142-5. PubMed ID: 26847244
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation.
    Makio H; Fujita T
    Acc Chem Res; 2009 Oct; 42(10):1532-44. PubMed ID: 19588950
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Silk-Derived 2D Porous Carbon Nanosheets with Atomically-Dispersed Fe-N
    Wang C; Chen W; Xia K; Xie N; Wang H; Zhang Y
    Small; 2019 Feb; 15(7):e1804966. PubMed ID: 30673170
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Supported Pd
    Zhang N; Zhang X; Kang Y; Ye C; Jin R; Yan H; Lin R; Yang J; Xu Q; Wang Y; Zhang Q; Gu L; Liu L; Song W; Liu J; Wang D; Li Y
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13388-13393. PubMed ID: 33817923
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Metal-Free Heptazine-Based Porous Polymeric Network as Highly Efficient Catalyst for CO
    Sharma N; Ugale B; Kumar S; Kailasam K
    Front Chem; 2021; 9():737511. PubMed ID: 34722455
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Atomically mixed Fe-group nanoalloys: catalyst design for the selective electrooxidation of ethylene glycol to oxalic acid.
    Matsumoto T; Sadakiyo M; Ooi ML; Yamamoto T; Matsumura S; Kato K; Takeguchi T; Ozawa N; Kubo M; Yamauchi M
    Phys Chem Chem Phys; 2015 May; 17(17):11359-66. PubMed ID: 25848911
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Facile Fabrication of the Cu-N-C Catalyst with Atomically Dispersed Unsaturated Cu-N2 Active Sites for Highly Efficient and Selective Glaser-Hay Coupling.
    Ren P; Li Q; Song T; Yang Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27210-27218. PubMed ID: 32438795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.