These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 36125494)
1. Control of Hot Carrier Cooling in Lead Halide Perovskites by Point Defects. Zhou Z; He J; Frauenheim T; Prezhdo OV; Wang J J Am Chem Soc; 2022 Oct; 144(39):18126-18134. PubMed ID: 36125494 [TBL] [Abstract][Full Text] [Related]
2. Enhancing Extraction and Suppressing Cooling of Hot Electrons in Lead Halide Perovskites by Dipolar Surface Passivation. Zhou Z; Wu Y; He J; Frauenheim T; Prezhdo OV J Am Chem Soc; 2024 Oct; 146(43):29905-29912. PubMed ID: 39417599 [TBL] [Abstract][Full Text] [Related]
3. Phonon-Mediated and Weakly Size-Dependent Electron and Hole Cooling in CsPbBr Boehme SC; Brinck ST; Maes J; Yazdani N; Zapata F; Chen K; Wood V; Hodgkiss JM; Hens Z; Geiregat P; Infante I Nano Lett; 2020 Mar; 20(3):1819-1829. PubMed ID: 32049539 [TBL] [Abstract][Full Text] [Related]
4. Ultrafast Intraband Spectroscopy of Hot-Carrier Cooling in Lead-Halide Perovskites. Hopper TR; Gorodetsky A; Frost JM; Müller C; Lovrincic R; Bakulin AA ACS Energy Lett; 2018 Sep; 3(9):2199-2205. PubMed ID: 30450410 [TBL] [Abstract][Full Text] [Related]
5. Tuning Hot Carrier Cooling Dynamics by Dielectric Confinement in Two-Dimensional Hybrid Perovskite Crystals. Yin J; Maity P; Naphade R; Cheng B; He JH; Bakr OM; Brédas JL; Mohammed OF ACS Nano; 2019 Nov; 13(11):12621-12629. PubMed ID: 31613089 [TBL] [Abstract][Full Text] [Related]
6. Effect of Zinc-Doping on the Reduction of the Hot-Carrier Cooling Rate in Halide Perovskites. Wei Q; Yin J; Bakr OM; Wang Z; Wang C; Mohammed OF; Li M; Xing G Angew Chem Int Ed Engl; 2021 May; 60(19):10957-10963. PubMed ID: 33629387 [TBL] [Abstract][Full Text] [Related]
7. Optimizing the quasi-equilibrium state of hot carriers in all-inorganic lead halide perovskite nanocrystals through Mn doping: fundamental dynamics and device perspectives. Meng J; Lan Z; Lin W; Liang M; Zou X; Zhao Q; Geng H; Castelli IE; Canton SE; Pullerits T; Zheng K Chem Sci; 2022 Feb; 13(6):1734-1745. PubMed ID: 35282633 [TBL] [Abstract][Full Text] [Related]
8. Cation Effect on Hot Carrier Cooling in Halide Perovskite Materials. Madjet ME; Berdiyorov GR; El-Mellouhi F; Alharbi FH; Akimov AV; Kais S J Phys Chem Lett; 2017 Sep; 8(18):4439-4445. PubMed ID: 28862451 [TBL] [Abstract][Full Text] [Related]
9. The effects of interstitial iodine in hybrid perovskite hot carrier cooling: A non-adiabatic molecular dynamics study. Banerjee S; Kang J; Zhang X; Wang LW J Chem Phys; 2020 Mar; 152(9):091102. PubMed ID: 33480710 [TBL] [Abstract][Full Text] [Related]
10. Hot carrier cooling mechanisms in halide perovskites. Fu J; Xu Q; Han G; Wu B; Huan CHA; Leek ML; Sum TC Nat Commun; 2017 Nov; 8(1):1300. PubMed ID: 29101381 [TBL] [Abstract][Full Text] [Related]
11. Cation-Dependent Hot Carrier Cooling in Halide Perovskite Nanocrystals. Chen J; Messing ME; Zheng K; Pullerits T J Am Chem Soc; 2019 Feb; 141(8):3532-3540. PubMed ID: 30685969 [TBL] [Abstract][Full Text] [Related]
12. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. Li W; She Y; Vasenko AS; Prezhdo OV Nanoscale; 2021 Jun; 13(23):10239-10265. PubMed ID: 34031683 [TBL] [Abstract][Full Text] [Related]
13. Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics. Ye J; Mondal N; Carwithen BP; Zhang Y; Dai L; Fan XB; Mao J; Cui Z; Ghosh P; Otero-Martínez C; van Turnhout L; Huang YT; Yu Z; Chen Z; Greenham NC; Stranks SD; Polavarapu L; Bakulin A; Rao A; Hoye RLZ Nat Commun; 2024 Sep; 15(1):8120. PubMed ID: 39285179 [TBL] [Abstract][Full Text] [Related]
14. Point defect-mediated hot carrier relaxation dynamics of lead-free FASnI Ghosh A; Kumar S; Sarkar P Nanoscale; 2024 Feb; 16(9):4737-4744. PubMed ID: 38299671 [TBL] [Abstract][Full Text] [Related]
15. Harnessing Hot Phonon Bottleneck in Metal Halide Perovskite Nanocrystals via Interfacial Electron-Phonon Coupling. Nie Z; Gao X; Ren Y; Xia S; Wang Y; Shi Y; Zhao J; Wang Y Nano Lett; 2020 Jun; 20(6):4610-4617. PubMed ID: 32421338 [TBL] [Abstract][Full Text] [Related]
16. Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials. Carwithen BP; Hopper TR; Ge Z; Mondal N; Wang T; Mazlumian R; Zheng X; Krieg F; Montanarella F; Nedelcu G; Kroll M; Siguan MA; Frost JM; Leo K; Vaynzof Y; Bodnarchuk MI; Kovalenko MV; Bakulin AA ACS Nano; 2023 Apr; 17(7):6638-6648. PubMed ID: 36939330 [TBL] [Abstract][Full Text] [Related]
17. Self-passivation of Halide Interstitial Defects by Organic Cations in Hybrid Lead-Halide Perovskites: Ab Initio Quantum Dynamics. Ma X; Tian X; Stippell E; Prezhdo OV; Long R; Fang WH J Am Chem Soc; 2024 Oct; 146(42):29255-29265. PubMed ID: 39393094 [TBL] [Abstract][Full Text] [Related]
18. Thermalization and relaxation mediated by phonon management in tin-lead perovskites. Dai L; Ye J; Greenham NC Light Sci Appl; 2023 Aug; 12(1):208. PubMed ID: 37648717 [TBL] [Abstract][Full Text] [Related]
19. Elimination of Charge Recombination Centers in Metal Halide Perovskites by Strain. Qiao L; Fang WH; Long R; Prezhdo OV J Am Chem Soc; 2021 Jul; 143(26):9982-9990. PubMed ID: 34155882 [TBL] [Abstract][Full Text] [Related]