These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 36125517)
1. Unraveling the Role of Aromatic Ring Size in Tuning the Electrochemical Performance of Small-Molecule Imide Cathodes for Lithium-Ion Batteries. Chen J; Gu S; Hao R; Liu K; Wang Z; Li Z; Yuan H; Guo H; Zhang K; Lu Z ACS Appl Mater Interfaces; 2022 Oct; 14(39):44330-44337. PubMed ID: 36125517 [TBL] [Abstract][Full Text] [Related]
2. Stable Bifunctional Perylene Imide Radicals for High-Performance Organic-Lithium Redox-Flow Batteries. Li L; Gong HX; Chen DY; Lin MJ Chemistry; 2018 Sep; 24(50):13188-13196. PubMed ID: 29923233 [TBL] [Abstract][Full Text] [Related]
3. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries. Min DJ; Lee K; Park SY; Kwon JE ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008 [TBL] [Abstract][Full Text] [Related]
4. Perylene-Based All-Organic Redox Battery with Excellent Cycling Stability. Iordache A; Delhorbe V; Bardet M; Dubois L; Gutel T; Picard L ACS Appl Mater Interfaces; 2016 Sep; 8(35):22762-7. PubMed ID: 27517882 [TBL] [Abstract][Full Text] [Related]
5. A novel π-conjugated poly(biphenyl diimide) with full utilization of carbonyls as a highly stable organic electrode for Li-ion batteries. Wang Z; Zhang B; Zhang Y; Yan N; He G RSC Adv; 2020 Aug; 10(52):31049-31055. PubMed ID: 35520648 [TBL] [Abstract][Full Text] [Related]
6. Construction of Naphthalene Diimide Derived Nanostructured Cathodes through Self-Assembly for High-Performance Sodium-Organic Batteries. Xing F; Li S; Chen L; Dang JS; He X ACS Nano; 2023 Nov; 17(21):21432-21442. PubMed ID: 37870378 [TBL] [Abstract][Full Text] [Related]
7. Stable Long Cycling of Small Molecular Organic Acid Electrode Materials Enabled by Nonflammable Eutectic Electrolyte. Liang Y; Wu W; Cao J; Guo R; Cao M; Zhang J; Wang M; Yu W; Zhang J Small; 2022 Feb; 18(6):e2104538. PubMed ID: 34850569 [TBL] [Abstract][Full Text] [Related]
8. Molecular Engineering of Perylene Imides for High-Performance Lithium Batteries: Diels-Alder Extension and Chiral Dimerization. Li L; Hong YJ; Chen DY; Lin MJ Chemistry; 2017 Nov; 23(65):16612-16620. PubMed ID: 28967155 [TBL] [Abstract][Full Text] [Related]
9. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
10. Tunable Redox Chemistry and Stability of Radical Intermediates in 2D Covalent Organic Frameworks for High Performance Sodium Ion Batteries. Gu S; Wu S; Cao L; Li M; Qin N; Zhu J; Wang Z; Li Y; Li Z; Chen J; Lu Z J Am Chem Soc; 2019 Jun; 141(24):9623-9628. PubMed ID: 31121094 [TBL] [Abstract][Full Text] [Related]
11. Carbonyl Bridge-Based p-π Conjugated Polymers as High-Performance Electrodes of Organic Lithium-Ion Batteries. Zu Y; Xu Y; Ma L; Kang Q; Yao H; Hou J ACS Appl Mater Interfaces; 2020 Apr; 12(16):18457-18464. PubMed ID: 32212633 [TBL] [Abstract][Full Text] [Related]
12. A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage. Wang G; Chandrasekhar N; Biswal BP; Becker D; Paasch S; Brunner E; Addicoat M; Yu M; Berger R; Feng X Adv Mater; 2019 Jul; 31(28):e1901478. PubMed ID: 31099072 [TBL] [Abstract][Full Text] [Related]
13. Designing High Performance Organic Batteries. Chen Y; Wang C Acc Chem Res; 2020 Nov; 53(11):2636-2647. PubMed ID: 32976710 [TBL] [Abstract][Full Text] [Related]
14. Cyclotetrabenzil Derivatives for Electrochemical Lithium-Ion Storage. Meng J; Robles A; Jalife S; Ren W; Zhang Y; Zhao L; Liang Y; Wu JI; Miljanić OŠ; Yao Y Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202300892. PubMed ID: 37067951 [TBL] [Abstract][Full Text] [Related]
15. Chiral Redox-Active Isosceles Triangles. Nalluri SK; Liu Z; Wu Y; Hermann KR; Samanta A; Kim DJ; Krzyaniak MD; Wasielewski MR; Stoddart JF J Am Chem Soc; 2016 May; 138(18):5968-77. PubMed ID: 27070768 [TBL] [Abstract][Full Text] [Related]
16. Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithium-Ion Batteries. Lyu H; Li P; Liu J; Mahurin S; Chen J; Hensley DK; Veith GM; Guo Z; Dai S; Sun XG ChemSusChem; 2018 Feb; 11(4):763-772. PubMed ID: 29363278 [TBL] [Abstract][Full Text] [Related]
17. Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries. Allam O; Cho BW; Kim KC; Jang SS RSC Adv; 2018 Nov; 8(69):39414-39420. PubMed ID: 35558035 [TBL] [Abstract][Full Text] [Related]
18. Dicyanotriphenylamine-Based Polyimides as High-Performance Electrodes for Next Generation Organic Lithium-Ion Batteries. Labasan KB; Lin HJ; Baskoro F; Togonon JJH; Wong HQ; Chang CW; Arco SD; Yen HJ ACS Appl Mater Interfaces; 2021 Apr; 13(15):17467-17477. PubMed ID: 33825434 [TBL] [Abstract][Full Text] [Related]
19. Conjugated microporous polyarylimides immobilization on carbon nanotubes with improved utilization of carbonyls as cathode materials for lithium/sodium-ion batteries. Li K; Wang Y; Gao B; Lv X; Si Z; Wang HG J Colloid Interface Sci; 2021 Nov; 601():446-453. PubMed ID: 34087601 [TBL] [Abstract][Full Text] [Related]
20. Grafting and Depositing Lithium Polysulfides on Cathodes for Cycling Stability of Lithium-Sulfur Batteries. Wu J; Zhang B; Liu J; Liu S; Yan T; Gao X ACS Appl Mater Interfaces; 2021 Sep; 13(34):40685-40694. PubMed ID: 34407612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]