These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36125628)

  • 1. Solitons in the Heimburg-Jackson model of sound propagation in lipid bilayers are enabled by dispersion of a stiff membrane.
    Drab M; Daniel M; Kralj-Iglič V; Iglič A
    Eur Phys J E Soft Matter; 2022 Sep; 45(9):79. PubMed ID: 36125628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reply to the comments on the letter of Peets et al. titled "Comment on solitons in the Heimburg-Jackson model of sound propagation in lipid bilayers are enabled by dispersion of a stiff membrane" by Drab et al.
    Drab M; Daniel M; Kralj-Iglič V; Iglič A
    Eur Phys J E Soft Matter; 2023 May; 46(6):39. PubMed ID: 37249682
    [No Abstract]   [Full Text] [Related]  

  • 3. Comment on "Solitons in the Heimburg-Jackson model of sound propagation in lipid bilayers are enabled by dispersion of a stiff membrane" by M. Drab et al.
    Peets T; Tamm K; Engelbrecht J
    Eur Phys J E Soft Matter; 2023 May; 46(5):34. PubMed ID: 37212921
    [No Abstract]   [Full Text] [Related]  

  • 4. Correction to: Solitons in the Heimburg-Jackson model of sound propagation in lipid bilayers are enabled by dispersion of a stiff membrane.
    Drab M; Daniel M; Kralj-Iglič V; Iglič A
    Eur Phys J E Soft Matter; 2022 Oct; 45(10):82. PubMed ID: 36219344
    [No Abstract]   [Full Text] [Related]  

  • 5. Multiwaves, breathers, lump and other solutions for the Heimburg model in biomembranes and nerves.
    Ozsahin DU; Ceesay B; Baber MZ; Ahmed N; Raza A; Rafiq M; Ahmad H; Awwad FA; Ismail EAA
    Sci Rep; 2024 May; 14(1):10180. PubMed ID: 38702384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of lump-like solitonic waves in Heimburg-Jackson biomembranes and nerves fractal model.
    El-Nabulsi RA
    J R Soc Interface; 2022 Mar; 19(188):20220079. PubMed ID: 35317648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlated volume-energy fluctuations of phospholipid membranes: a simulation study.
    Pedersen UR; Peters GH; Schrøder TB; Dyre JC
    J Phys Chem B; 2010 Feb; 114(6):2124-30. PubMed ID: 20095587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic response of bilayers with intrinsic proteins.
    De Lacey EH; Wolfe J
    Biochim Biophys Acta; 1982 Nov; 692(3):425-30. PubMed ID: 7171604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On soliton propagation in biomembranes and nerves.
    Heimburg T; Jackson AD
    Proc Natl Acad Sci U S A; 2005 Jul; 102(28):9790-5. PubMed ID: 15994235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimentally determined tilt and bending moduli of single-component lipid bilayers.
    Nagle JF
    Chem Phys Lipids; 2017 Jun; 205():18-24. PubMed ID: 28412174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodic soliton trains and informational code structures in an improved soliton model for biomembranes and nerves.
    Fongang Achu G; Mkam Tchouobiap SE; Moukam Kakmeni FM; Tchawoua C
    Phys Rev E; 2018 Aug; 98(2-1):022216. PubMed ID: 30253549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Amyloid-β Monomers on Lipid Membrane Mechanical Parameters-Potential Implications for Mechanically Driven Neurodegeneration in Alzheimer's Disease.
    Drabik D; Chodaczek G; Kraszewski S
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane heterogeneities and fusogenicity in phosphatidylcholine-phosphatidic acid rigid vesicles as a function of pH and lipid chain mismatch.
    Bhagat M; Sofou S
    Langmuir; 2010 Feb; 26(3):1666-73. PubMed ID: 19813725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical aspects of membrane thermodynamics. Estimation of the mechanical properties of lipid membranes close to the chain melting transition from calorimetry.
    Heimburg T
    Biochim Biophys Acta; 1998 Dec; 1415(1):147-62. PubMed ID: 9858715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations.
    Wang Y; Gkeka P; Fuchs JE; Liedl KR; Cournia Z
    Biochim Biophys Acta; 2016 Nov; 1858(11):2846-2857. PubMed ID: 27526680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of nondegenerate vector solitons in a long-wave-short-wave resonance interaction system.
    Stalin S; Ramakrishnan R; Lakshmanan M
    Phys Rev E; 2022 Apr; 105(4-1):044203. PubMed ID: 35590565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On mathematical modelling of solitary pulses in cylindrical biomembranes.
    Engelbrecht J; Tamm K; Peets T
    Biomech Model Mechanobiol; 2015 Jan; 14(1):159-67. PubMed ID: 24848645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chain interdigitation in DPPC bilayers induced by HgCl2: evidences from continuous wave and pulsed EPR.
    Stirpe A; Pantusa M; Guzzi R; Bartucci R; Sportelli L
    Chem Phys Lipids; 2014 Oct; 183():176-83. PubMed ID: 25036613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.