These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36125750)

  • 1. Reprogramming CRISPR-Mediated RNA Interference for Silencing of Essential Genes in Sulfolobales.
    Wimmer E; Zink IA; Schleper C
    Methods Mol Biol; 2022; 2522():177-201. PubMed ID: 36125750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative CRISPR type III-based knockdown of essential genes in hyperthermophilic
    Zink IA; Fouqueau T; Tarrason Risa G; Werner F; Baum B; Bläsi U; Schleper C
    RNA Biol; 2021 Mar; 18(3):421-434. PubMed ID: 32957821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas adaptive immune systems in Sulfolobales: genetic studies and molecular mechanisms.
    Yu Z; Jiang S; Wang Y; Tian X; Zhao P; Xu J; Feng M; She Q
    Sci China Life Sci; 2021 May; 64(5):678-696. PubMed ID: 33140167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales.
    Zink IA; Wimmer E; Schleper C
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33172134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot and crispy: CRISPR-Cas systems in the hyperthermophile Sulfolobus solfataricus.
    Zhang J; White MF
    Biochem Soc Trans; 2013 Dec; 41(6):1422-6. PubMed ID: 24256231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate generation for endonucleases of CRISPR/cas systems.
    Zoephel J; Dwarakanath S; Richter H; Plagens A; Randau L
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 22986408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus.
    Zebec Z; Manica A; Zhang J; White MF; Schleper C
    Nucleic Acids Res; 2014 Apr; 42(8):5280-8. PubMed ID: 24603867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of ribonucleoprotein effector complexes of Sulfolobus islandicus CRISPR-Cas systems.
    Feng M; She Q
    Methods Enzymol; 2021; 659():327-347. PubMed ID: 34752293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cas4 Nucleases Can Effect Specific Integration of CRISPR Spacers.
    Zhang Z; Pan S; Liu T; Li Y; Peng N
    J Bacteriol; 2019 Jun; 201(12):. PubMed ID: 30936372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable plasmid interference by the CRISPR-Cas system in Thermococcus kodakarensis.
    Elmore JR; Yokooji Y; Sato T; Olson S; Glover CV; Graveley BR; Atomi H; Terns RM; Terns MP
    RNA Biol; 2013 May; 10(5):828-40. PubMed ID: 23535213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system.
    Pan S; Li Q; Deng L; Jiang S; Jin X; Peng N; Liang Y; She Q; Li Y
    RNA Biol; 2019 Sep; 16(9):1166-1178. PubMed ID: 31096876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscopy studies of Type III CRISPR machines in Sulfolobus solfataricus.
    Cannone G; Webber-Birungi M; Spagnolo L
    Biochem Soc Trans; 2013 Dec; 41(6):1427-30. PubMed ID: 24256232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs.
    Hale CR; Majumdar S; Elmore J; Pfister N; Compton M; Olson S; Resch AM; Glover CV; Graveley BR; Terns RM; Terns MP
    Mol Cell; 2012 Feb; 45(3):292-302. PubMed ID: 22227116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Target RNA Cleavage of a III-B CRISPR-Cas System Induces Robust Autoimmunity in
    Zhang Y; Lin J; Tian X; Wang Y; Zhao R; Wu C; Wang X; Zhao P; Bi X; Yu Z; Han W; Peng N; Liang YX; She Q
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus.
    Terns RM; Terns MP
    Biochem Soc Trans; 2013 Dec; 41(6):1416-21. PubMed ID: 24256230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes.
    Plagens A; Richter H; Charpentier E; Randau L
    FEMS Microbiol Rev; 2015 May; 39(3):442-63. PubMed ID: 25934119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-based immune systems of the Sulfolobales: complexity and diversity.
    Garrett RA; Shah SA; Vestergaard G; Deng L; Gudbergsdottir S; Kenchappa CS; Erdmann S; She Q
    Biochem Soc Trans; 2011 Jan; 39(1):51-7. PubMed ID: 21265746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR-Cas system by binding to target RNA and crRNA.
    Li Y; Zhang Y; Lin J; Pan S; Han W; Peng N; Liang YX; She Q
    Nucleic Acids Res; 2017 Nov; 45(19):11305-11314. PubMed ID: 28977458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus.
    Majumdar S; Zhao P; Pfister NT; Compton M; Olson S; Glover CV; Wells L; Graveley BR; Terns RM; Terns MP
    RNA; 2015 Jun; 21(6):1147-58. PubMed ID: 25904135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems.
    Chylinski K; Le Rhun A; Charpentier E
    RNA Biol; 2013 May; 10(5):726-37. PubMed ID: 23563642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.