These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36125959)

  • 1.
    Leadbeater DR; Bruce NC; Tonon T
    Microb Genom; 2022 Sep; 8(9):. PubMed ID: 36125959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current application of algae derivatives for bioplastic production: A review.
    Dang BT; Bui XT; Tran DPH; Hao Ngo H; Nghiem LD; Hoang TK; Nguyen PT; Nguyen HH; Vo TK; Lin C; Yi Andrew Lin K; Varjani S
    Bioresour Technol; 2022 Mar; 347():126698. PubMed ID: 35026424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green alternatives to petroleum-based plastics: production of bioplastic from Pseudomonas neustonica strain NGB15 using waste carbon source.
    Baltacı NG; Baltacı MÖ; Görmez A; Örtücü S
    Environ Sci Pollut Res Int; 2024 May; 31(21):31149-31158. PubMed ID: 38625463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of Polyhydroxyalkanoates (PHAs) by the Valorization of Biomass and Synthetic Waste.
    Javaid H; Nawaz A; Riaz N; Mukhtar H; -Ul-Haq I; Shah KA; Khan H; Naqvi SM; Shakoor S; Rasool A; Ullah K; Manzoor R; Kaleem I; Murtaza G
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33255864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marine biodegradation of tailor-made polyhydroxyalkanoates (PHA) influenced by the chemical structure and associated bacterial communities.
    Derippe G; Philip L; Lemechko P; Eyheraguibel B; Meistertzheim AL; Pujo-Pay M; Conan P; Barbe V; Bruzaud S; Ghiglione JF
    J Hazard Mater; 2024 Jan; 462():132782. PubMed ID: 37856958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications.
    Behera S; Priyadarshanee M; Vandana ; Das S
    Chemosphere; 2022 May; 294():133723. PubMed ID: 35085614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of β-oxidation and de novo fatty acid synthesis in the production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa.
    Gutiérrez-Gómez U; Servín-González L; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2019 May; 103(9):3753-3760. PubMed ID: 30919102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.
    Urtuvia V; Villegas P; González M; Seeger M
    Int J Biol Macromol; 2014 Sep; 70():208-13. PubMed ID: 24974981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial cell factories for the production of polyhydroxyalkanoates.
    Nagarajan D; Aristya GR; Lin YJ; Chang JJ; Yen HW; Chang JS
    Essays Biochem; 2021 Jul; 65(2):337-353. PubMed ID: 34132340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot treatment of Saccharophagus degradans for polyhydroxyalkanoate production from brown seaweed.
    Kargupta W; Kafle SR; Lee Y; Kim BS
    Bioresour Technol; 2023 Oct; 385():129392. PubMed ID: 37364651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trends in PHA Production by Microbially Diverse and Functionally Distinct Communities.
    Angra V; Sehgal R; Gupta R
    Microb Ecol; 2023 Feb; 85(2):572-585. PubMed ID: 35333950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoheterotrophic Assimilation of Valerate and Associated Polyhydroxyalkanoate Production by
    Bayon-Vicente G; Zarbo S; Deutschbauer A; Wattiez R; Leroy B
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation.
    Ma R; Li J; Tyagi RD; Zhang X
    Bioresour Technol; 2024 Jan; 391(Pt A):129977. PubMed ID: 37925086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyhydroxyalkanoates (PHA) production in bacterial co-culture using glucose and volatile fatty acids as carbon source.
    Munir S; Jamil N
    J Basic Microbiol; 2018 Mar; 58(3):247-254. PubMed ID: 29314110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marine bacteria associated with the green seaweed Ulva sp. for the production of polyhydroxyalkanoates.
    Gnaim R; Polikovsky M; Unis R; Sheviryov J; Gozin M; Golberg A
    Bioresour Technol; 2021 May; 328():124815. PubMed ID: 33609888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sea-Ice Bacteria
    Eronen-Rasimus E; Hultman J; Hai T; Pessi IS; Collins E; Wright S; Laine P; Viitamäki S; Lyra C; Thomas DN; Golyshin PN; Luhtanen AM; Kuosa H; Kaartokallio H
    Appl Environ Microbiol; 2021 Aug; 87(17):e0092921. PubMed ID: 34160268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review.
    Yoon J; Oh MK
    Bioresour Technol; 2022 Jan; 344(Pt B):126307. PubMed ID: 34767907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyhydroxyalkanoate production by a novel bacterium Massilia sp. UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene.
    Han X; Satoh Y; Kuriki Y; Seino T; Fujita S; Suda T; Kobayashi T; Tajima K
    J Biosci Bioeng; 2014 Nov; 118(5):514-9. PubMed ID: 24932969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A
    Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater.
    Ahuja V; Singh PK; Mahata C; Jeon JM; Kumar G; Yang YH; Bhatia SK
    Microb Cell Fact; 2024 Jul; 23(1):187. PubMed ID: 38951813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.