These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 36125959)

  • 21. Microalgae as source of polyhydroxyalkanoates (PHAs) - A review.
    Costa SS; Miranda AL; de Morais MG; Costa JAV; Druzian JI
    Int J Biol Macromol; 2019 Jun; 131():536-547. PubMed ID: 30885732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sustainable applications of polyhydroxyalkanoates in various fields: A critical review.
    Pandey A; Adama N; Adjallé K; Blais JF
    Int J Biol Macromol; 2022 Nov; 221():1184-1201. PubMed ID: 36113591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring polyhydroxyalkanoates biosynthesis using hydrocarbons as carbon source: a comprehensive review.
    Corti Monzón G; Bertola G; Herrera Seitz MK; Murialdo SE
    Biodegradation; 2024 Aug; 35(5):519-538. PubMed ID: 38310580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Consolidated bioprocessing for production of polyhydroxyalkanotes from red algae Gelidium amansii.
    Sawant SS; Salunke BK; Kim BS
    Int J Biol Macromol; 2018 Apr; 109():1012-1018. PubMed ID: 29154880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microalgal Biomass as Feedstock for Bacterial Production of PHA: Advances and Future Prospects.
    Tan FHP; Nadir N; Sudesh K
    Front Bioeng Biotechnol; 2022; 10():879476. PubMed ID: 35646848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects.
    Kumar A; Srivastava JK; Mallick N; Singh AK
    Recent Pat Biotechnol; 2015; 9(1):4-21. PubMed ID: 26073514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The phylogenetic and global distribution of bacterial polyhydroxyalkanoate bioplastic-degrading genes.
    Viljakainen VR; Hug LA
    Environ Microbiol; 2021 Mar; 23(3):1717-1731. PubMed ID: 33496062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock.
    Thomas AP; Kasa VP; Dubey BK; Sen R; Sarmah AK
    Sci Total Environ; 2023 Dec; 904():167243. PubMed ID: 37741416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in constructing artificial microbial consortia for the production of medium-chain-length polyhydroxyalkanoates.
    Ai M; Zhu Y; Jia X
    World J Microbiol Biotechnol; 2021 Jan; 37(1):2. PubMed ID: 33392870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microplastics a Novel Substratum for Polyhydroxyalkanoate (PHA)-Producing Bacteria in Aquatic Environments.
    Kankonkar HT; Khandeparker RS
    Curr Microbiol; 2022 Jul; 79(9):258. PubMed ID: 35852610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sustainable Seaweed Biotechnology Solutions for Carbon Capture, Composition, and Deconstruction.
    Laurens LML; Lane M; Nelson RS
    Trends Biotechnol; 2020 Nov; 38(11):1232-1244. PubMed ID: 32386971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production?
    Khatami K; Perez-Zabaleta M; Owusu-Agyeman I; Cetecioglu Z
    Waste Manag; 2021 Jan; 119():374-388. PubMed ID: 33139190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Insights into Polyhydroxyalkanoates Biosynthesis.
    Sagong HY; Son HF; Choi SY; Lee SY; Kim KJ
    Trends Biochem Sci; 2018 Oct; 43(10):790-805. PubMed ID: 30139647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unsterile production of a polyhydroxyalkanoate copolymer by Halomonas cupida J9.
    Liu Y; Zhao W; Wang S; Huo K; Chen Y; Guo H; Wang S; Liu R; Yang C
    Int J Biol Macromol; 2022 Dec; 223(Pt A):240-251. PubMed ID: 36347367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PHA-Based Bioplastic: a Potential Alternative to Address Microplastic Pollution.
    Acharjee SA; Bharali P; Gogoi B; Sorhie V; Walling B; Alemtoshi
    Water Air Soil Pollut; 2023; 234(1):21. PubMed ID: 36593989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complete genome sequence of Photobacterium ganghwense C2.2: A new polyhydroxyalkanoate production candidate.
    Lascu I; Mereuță I; Chiciudean I; Hansen H; Avramescu SM; Tănase AM; Stoica I
    Microbiologyopen; 2021 Mar; 10(2):e1182. PubMed ID: 33970538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources.
    Jo SY; Son J; Sohn YJ; Lim SH; Lee JY; Yoo JI; Park SY; Na JG; Park SJ
    Int J Biol Macromol; 2021 Dec; 192():978-998. PubMed ID: 34656544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rational engineering of natural polyhydroxyalkanoates producing microorganisms for improved synthesis and recovery.
    Borrero-de Acuña JM; Poblete-Castro I
    Microb Biotechnol; 2023 Feb; 16(2):262-285. PubMed ID: 35792877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.
    Manso Cobos I; Ibáñez García MI; de la Peña Moreno F; Sáez Melero LP; Luque-Almagro VM; Castillo Rodríguez F; Roldán Ruiz MD; Prieto Jiménez MA; Moreno Vivián C
    Microb Cell Fact; 2015 Jun; 14():77. PubMed ID: 26055753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-production of microbial polyhydroxyalkanoates with other chemicals.
    Li T; Elhadi D; Chen GQ
    Metab Eng; 2017 Sep; 43(Pt A):29-36. PubMed ID: 28782693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.