These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 36126139)
1. PFOS Mass Flux Reduction/Mass Removal: Impacts of a Lower-Permeability Sand Lens within Otherwise Homogeneous Systems. Hitzelberger M; Khan NA; Mohamed RAM; Brusseau ML; Carroll KC Environ Sci Technol; 2022 Oct; 56(19):13675-13685. PubMed ID: 36126139 [TBL] [Abstract][Full Text] [Related]
2. Potential impact of bacteria on the transport of PFAS in porous media. Dai M; Yan N; Brusseau ML Water Res; 2023 Sep; 243():120350. PubMed ID: 37499541 [TBL] [Abstract][Full Text] [Related]
3. Modeling a well-characterized perfluorooctane sulfonate (PFOS) source and plume using the REMChlor-MD model to account for matrix diffusion. Kulkarni PR; Adamson DT; Popovic J; Newell CJ J Contam Hydrol; 2022 May; 247():103986. PubMed ID: 35279484 [TBL] [Abstract][Full Text] [Related]
4. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media. Brusseau ML; Guo B; Huang D; Yan N; Lyu Y Water Res; 2021 Sep; 202():117405. PubMed ID: 34273774 [TBL] [Abstract][Full Text] [Related]
5. Influence of Residual Nonaqueous-Phase Liquids (NAPLs) on the Transport and Retention of Perfluoroalkyl Substances. Liao S; Arshadi M; Woodcock MJ; Saleeba ZSSL; Pinchbeck D; Liu C; Cápiro NL; Abriola LM; Pennell KD Environ Sci Technol; 2022 Jun; 56(12):7976-7985. PubMed ID: 35675453 [TBL] [Abstract][Full Text] [Related]
6. Nonideal Transport and Extended Elution Tailing of PFOS in Soil. Brusseau ML; Khan N; Wang Y; Yan N; Van Glubt S; Carroll KC Environ Sci Technol; 2019 Sep; 53(18):10654-10664. PubMed ID: 31464435 [TBL] [Abstract][Full Text] [Related]
7. Green sorption media for the removal of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) from water. Ordonez D; Valencia A; Sadmani AHMA; Chang NB Sci Total Environ; 2022 May; 819():152886. PubMed ID: 34998770 [TBL] [Abstract][Full Text] [Related]
8. Increased levels of perfluorooctanesulfonic acid (PFOS) during Hurricane Dorian on the east coast of Florida. Martinez B; Da Silva BF; Aristizabal-Henao JJ; Denslow ND; Osborne TZ; Morrison ES; Bianchi TS; Bowden JA Environ Res; 2022 May; 208():112635. PubMed ID: 34990607 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical destruction and mobilization of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in saturated soil. Hou J; Li G; Liu M; Chen L; Yao Y; Fallgren PH; Jin S Chemosphere; 2022 Jan; 287(Pt 3):132205. PubMed ID: 34563764 [TBL] [Abstract][Full Text] [Related]
10. Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model. Liu S; Lu Y; Xie S; Wang T; Jones KC; Sweetman AJ Environ Int; 2015 Dec; 85():15-26. PubMed ID: 26298835 [TBL] [Abstract][Full Text] [Related]
11. In-situ sequestration of perfluoroalkyl substances using polymer-stabilized ion exchange resin. Liu C; Chu J; Cápiro NL; Fortner JD; Pennell KD J Hazard Mater; 2022 Jan; 422():126960. PubMed ID: 34449348 [TBL] [Abstract][Full Text] [Related]
12. Impact of matrix diffusion on the migration of groundwater plumes for Perfluoroalkyl acids (PFAAs) and other non-degradable compounds. Farhat SK; Newell CJ; Lee SA; Looney BB; Falta RW J Contam Hydrol; 2022 May; 247():103987. PubMed ID: 35286952 [TBL] [Abstract][Full Text] [Related]
13. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media. Huang D; Saleem H; Guo B; Brusseau ML Sci Total Environ; 2022 Feb; 806(Pt 2):150595. PubMed ID: 34592291 [TBL] [Abstract][Full Text] [Related]
14. Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media. Abraham JEF; Mumford KG; Patch DJ; Weber KP Environ Sci Technol; 2022 Nov; 56(22):15489-15498. PubMed ID: 36279175 [TBL] [Abstract][Full Text] [Related]
15. Column versus batch methods for measuring PFOS and PFOA sorption to geomedia. Van Glubt S; Brusseau ML; Yan N; Huang D; Khan N; Carroll KC Environ Pollut; 2021 Jan; 268(Pt B):115917. PubMed ID: 33143983 [TBL] [Abstract][Full Text] [Related]
16. Environmental Exposure to Emerging Alternatives of Per- and Polyfluoroalkyl Substances and Polycystic Ovarian Syndrome in Women Diagnosed with Infertility: A Mixture Analysis. Zhan W; Qiu W; Ao Y; Zhou W; Sun Y; Zhao H; Zhang J Environ Health Perspect; 2023 May; 131(5):57001. PubMed ID: 37134253 [TBL] [Abstract][Full Text] [Related]
17. Factors Affecting the Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) by Colloidal Activated Carbon. Hakimabadi SG; Taylor A; Pham AL Water Res; 2023 Aug; 242():120212. PubMed ID: 37336180 [TBL] [Abstract][Full Text] [Related]
18. Determinants of serum half-lives for linear and branched perfluoroalkyl substances after long-term high exposure-A study in Ronneby, Sweden. Li Y; Andersson A; Xu Y; Pineda D; Nilsson CA; Lindh CH; Jakobsson K; Fletcher T Environ Int; 2022 May; 163():107198. PubMed ID: 35447437 [TBL] [Abstract][Full Text] [Related]
19. Spatiotemporal distribution, partitioning behavior and flux of per- and polyfluoroalkyl substances in surface water and sediment from Poyang Lake, China. Tang A; Zhang X; Li R; Tu W; Guo H; Zhang Y; Li Z; Liu Y; Mai B Chemosphere; 2022 May; 295():133855. PubMed ID: 35124087 [TBL] [Abstract][Full Text] [Related]
20. The Co-Transport of PFAS and Cr(VI) in porous media. Huang D; Khan NA; Wang G; Carroll KC; Brusseau ML Chemosphere; 2022 Jan; 286(Pt 3):131834. PubMed ID: 34392202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]