These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36126260)
1. Enhancing oxidative phosphorylation over glycolysis for energy production in cultured mesenchymal stem cells. Monsour M; Gorsky A; Nguyen H; Castelli V; Lee JY; Borlongan CV Neuroreport; 2022 Oct; 33(15):635-640. PubMed ID: 36126260 [TBL] [Abstract][Full Text] [Related]
2. Glycolytic reprogramming in macrophages and MSCs during inflammation. Li X; Shen H; Zhang M; Teissier V; Huang EE; Gao Q; Tsubosaka M; Toya M; Kushioka J; Maduka CV; Contag CH; Chow SK; Zhang N; Goodman SB Front Immunol; 2023; 14():1199751. PubMed ID: 37675119 [TBL] [Abstract][Full Text] [Related]
3. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity. Dott W; Mistry P; Wright J; Cain K; Herbert KE Redox Biol; 2014; 2():224-33. PubMed ID: 24494197 [TBL] [Abstract][Full Text] [Related]
4. Assessment of Cellular Bioenergetics in Mouse Hematopoietic Stem and Primitive Progenitor Cells using the Extracellular Flux Analyzer. Kumar S; Jones M; Li Q; Lombard DB J Vis Exp; 2021 Sep; (175):. PubMed ID: 34633378 [TBL] [Abstract][Full Text] [Related]
5. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695 [TBL] [Abstract][Full Text] [Related]
6. In Vitro Analysis of Energy Metabolism in Bone-Marrow Mesenchymal Stromal Cells. Bourgeais J; Hérault O Methods Mol Biol; 2021; 2308():59-70. PubMed ID: 34057714 [TBL] [Abstract][Full Text] [Related]
8. Metabolic Switching of Cultured Mesenchymal Stem Cells Creates Super Mitochondria in Rescuing Ischemic Neurons. Gorsky A; Monsour M; Nguyen H; Castelli V; Lee JY; Borlongan CV Neuromolecular Med; 2023 Mar; 25(1):120-124. PubMed ID: 35857254 [TBL] [Abstract][Full Text] [Related]
9. Design of a multi-sensor platform for integrating extracellular acidification rate with multi-metabolite flux measurement for small biological samples. Obeidat YM; Cheng MH; Catandi G; Carnevale E; Chicco AJ; Chen TW Biosens Bioelectron; 2019 May; 133():39-47. PubMed ID: 30909011 [TBL] [Abstract][Full Text] [Related]
10. Metabolic influence of walnut phenolic extract on mitochondria in a colon cancer stem cell model. Choi J; Shin PK; Kim Y; Hong CP; Choi SW Eur J Nutr; 2019 Jun; 58(4):1635-1645. PubMed ID: 29740695 [TBL] [Abstract][Full Text] [Related]
11. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism. Plitzko B; Loesgen S Bio Protoc; 2018 May; 8(10):e2850. PubMed ID: 34285967 [TBL] [Abstract][Full Text] [Related]
12. Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Marroquin LD; Hynes J; Dykens JA; Jamieson JD; Will Y Toxicol Sci; 2007 Jun; 97(2):539-47. PubMed ID: 17361016 [TBL] [Abstract][Full Text] [Related]
13. The Metabolic Changes between Monolayer (2D) and Three-Dimensional (3D) Culture Conditions in Human Mesenchymal Stem/Stromal Cells Derived from Adipose Tissue. Rybkowska P; Radoszkiewicz K; Kawalec M; Dymkowska D; Zabłocka B; Zabłocki K; Sarnowska A Cells; 2023 Jan; 12(1):. PubMed ID: 36611971 [TBL] [Abstract][Full Text] [Related]
14. Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells. Lapel M; Weston P; Strassheim D; Karoor V; Burns N; Lyubchenko T; Paucek P; Stenmark KR; Gerasimovskaya EV Am J Physiol Cell Physiol; 2017 Jan; 312(1):C56-C70. PubMed ID: 27856430 [TBL] [Abstract][Full Text] [Related]
15. MFN2 knockdown promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Deng L; Yi S; Yin X; Li Y; Luan Q Stem Cell Res Ther; 2022 Apr; 13(1):162. PubMed ID: 35413941 [TBL] [Abstract][Full Text] [Related]
16. Acute myeloid leukemia sensitivity to metabolic inhibitors: glycolysis showed to be a better therapeutic target. Lapa B; Gonçalves AC; Jorge J; Alves R; Pires AS; Abrantes AM; Coucelo M; Abrunhosa A; Botelho MF; Nascimento-Costa JM; Sarmento-Ribeiro AB Med Oncol; 2020 Jul; 37(8):72. PubMed ID: 32725458 [TBL] [Abstract][Full Text] [Related]
17. Mesenchymal stem cells from preterm to term newborns undergo a significant switch from anaerobic glycolysis to the oxidative phosphorylation. Ravera S; Podestà M; Sabatini F; Fresia C; Columbaro M; Bruno S; Fulcheri E; Ramenghi LA; Frassoni F Cell Mol Life Sci; 2018 Mar; 75(5):889-903. PubMed ID: 28975370 [TBL] [Abstract][Full Text] [Related]
18. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells. Nakashima RA; Paggi MG; Pedersen PL Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833 [TBL] [Abstract][Full Text] [Related]
19. Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Mylotte LA; Duffy AM; Murphy M; O'Brien T; Samali A; Barry F; Szegezdi E Stem Cells; 2008 May; 26(5):1325-36. PubMed ID: 18308942 [TBL] [Abstract][Full Text] [Related]
20. Musculoskeletal Progenitor/Stromal Cell-Derived Mitochondria Modulate Cell Differentiation and Therapeutical Function. Jorgensen C; Khoury M Front Immunol; 2021; 12():606781. PubMed ID: 33763061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]