These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36126287)

  • 1. Roles of Anion-Cation Coupling Transport and Dehydration-Induced Ion-Membrane Interaction in Precise Separation of Ions by Nanofiltration Membranes.
    Zhai X; Wang YL; Dai R; Li X; Wang Z
    Environ Sci Technol; 2022 Oct; 56(19):14069-14079. PubMed ID: 36126287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enthalpic and Entropic Selectivity of Water and Small Ions in Polyamide Membranes.
    Shefer I; Peer-Haim O; Leifman O; Epsztein R
    Environ Sci Technol; 2021 Nov; 55(21):14863-14875. PubMed ID: 34677944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of Ionic Hydration Structure and Selective Transport Behavior to Aqueous Solution Chemistry during Nanofiltration.
    Lu C; Chen Z; Wu Y; Zhang Y; Wang F; Hu C; Qu J
    Environ Sci Technol; 2024 Jul; 58(26):11791-11801. PubMed ID: 38871647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying barriers to monovalent anion transport in narrow non-polar pores.
    Richards LA; Schäfer AI; Richards BS; Corry B
    Phys Chem Chem Phys; 2012 Sep; 14(33):11633-8. PubMed ID: 22821005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental energy barriers to anions transporting through nanofiltration membranes.
    Richards LA; Richards BS; Corry B; Schäfer AI
    Environ Sci Technol; 2013 Feb; 47(4):1968-76. PubMed ID: 23298263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive Ion Pairing and the Role of Anions in the Behavior of Hydrated Electrons in Electrolytes.
    Narvaez WA; Park SJ; Schwartz BJ
    J Phys Chem B; 2022 Oct; 126(39):7701-7708. PubMed ID: 36166380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Knowledge Attained by Machine Learning on Ion Transport across Polyamide Membranes Using Explainable Artificial Intelligence.
    Jeong N; Epsztein R; Wang R; Park S; Lin S; Tong T
    Environ Sci Technol; 2023 Nov; 57(46):17851-17862. PubMed ID: 36917705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydration-enhanced ion-pore interactions dominate anion transport and selectivity in nanochannels.
    Lu C; Hu C; Chen Z; Wang P; Feng F; He G; Wang F; Zhang Y; Liu JZ; Zhang X; Qu J
    Sci Adv; 2023 Jul; 9(27):eadf8412. PubMed ID: 37418527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steric Hindrance-Induced Dehydration Promotes Cation Selectivity in Trans-Subnanochannel Transport.
    Chen Z; Hu C; Lu C; Sun J; Zhang Y; Wang F; Qu J
    ACS Nano; 2023 Jul; 17(13):12629-12640. PubMed ID: 37350330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of dehydration in determining ion transport in narrow pores.
    Richards LA; Schäfer AI; Richards BS; Corry B
    Small; 2012 Jun; 8(11):1701-9. PubMed ID: 22434668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic-induced ion-confined partitioning in graphene nanolaminate membrane for breaking anion-cation co-transport to enhance desalination.
    Zhang H; Xing J; Wei G; Wang X; Chen S; Quan X
    Nat Commun; 2024 May; 15(1):4324. PubMed ID: 38773152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamide Membranes with Tunable Surface Charge Induced by Dipole-Dipole Interaction for Selective Ion Separation.
    Zhao S; Zhao Z; Zhang X; Zha Z; Tong T; Wang R; Wang Z
    Environ Sci Technol; 2024 Mar; 58(11):5174-5185. PubMed ID: 38451543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the triple solute/ion/water interactions on the saccharide hydration: A volumetric approach.
    Teychené J; Roux-De Balmann H; Galier S
    Carbohydr Res; 2017 Aug; 448():118-127. PubMed ID: 28662407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perfect confinement of crown ethers in MOF membrane for complete dehydration and fast transport of monovalent ions.
    Xu T; Wu B; Li W; Li Y; Zhu Y; Sheng F; Li Q; Ge L; Li X; Wang H; Xu T
    Sci Adv; 2024 May; 10(19):eadn0944. PubMed ID: 38718127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation.
    Mo RJ; Chen S; Huang LQ; Ding XL; Rafique S; Xia XH; Li ZQ
    Nat Commun; 2024 Mar; 15(1):2145. PubMed ID: 38459053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-layer Janus charged nanofiltration membranes constructed by sequential electrospray polymerization for efficient water softening.
    Ma Z; Ren LF; Ying D; Jia J; Shao J
    Chemosphere; 2023 Jan; 310():136929. PubMed ID: 36273607
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Lu C; Hu C; Ritt CL; Hua X; Sun J; Xia H; Liu Y; Li DW; Ma B; Elimelech M; Qu J
    J Am Chem Soc; 2021 Sep; 143(35):14242-14252. PubMed ID: 34431669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation.
    Ren Y; Qi P; Wan Y; Chen C; Chen X; Feng S; Luo J
    Environ Sci Technol; 2022 Dec; 56(24):18018-18029. PubMed ID: 36445263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamentals of selective ion transport through multilayer polyelectrolyte membranes.
    Cheng C; Yaroshchuk A; Bruening ML
    Langmuir; 2013 Feb; 29(6):1885-92. PubMed ID: 23317152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydration-Determined Ion Selectivity of Graphene Subnanopores.
    Fu Y; Su S; Zhang N; Wang Y; Guo X; Xue J
    ACS Appl Mater Interfaces; 2020 May; 12(21):24281-24288. PubMed ID: 32349478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.