These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 36126431)
1. Electrochemical and CD-spectroelectrochemical studies of the interaction between BSA and the complex [Cu(Bztpen)] Ocampo-Hernández J; de Jesús Gómez-Guzmán J; Cruz-Ramírez M; Rebolledo-Chávez JPF; Mendoza A; Moreno-Esparza R; Ortiz-Frade L J Inorg Biochem; 2022 Dec; 237():111994. PubMed ID: 36126431 [TBL] [Abstract][Full Text] [Related]
2. Interaction of copper(II) complex of compartmental Schiff base ligand N,N'-bis(3-hydroxysalicylidene)ethylenediamine with bovine serum albumin. Boghaei DM; Farvid SS; Gharagozlou M Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):650-5. PubMed ID: 16859966 [TBL] [Abstract][Full Text] [Related]
3. A molecular copper catalyst for electrochemical water reduction with a large hydrogen-generation rate constant in aqueous solution. Zhang P; Wang M; Yang Y; Yao T; Sun L Angew Chem Int Ed Engl; 2014 Dec; 53(50):13803-7. PubMed ID: 25314646 [TBL] [Abstract][Full Text] [Related]
4. Spectroscopic investigation into the interaction of a diazacyclam-based macrocyclic copper(ii) complex with bovine serum albumin. Shahabadi N; Hakimi M; Morovati T; Hadidi S; Moeini K Luminescence; 2017 Feb; 32(1):43-50. PubMed ID: 27162056 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive studies on the interaction of copper nanoparticles with bovine serum albumin using various spectroscopies. Bhogale A; Patel N; Mariam J; Dongre PM; Miotello A; Kothari DC Colloids Surf B Biointerfaces; 2014 Jan; 113():276-84. PubMed ID: 24121071 [TBL] [Abstract][Full Text] [Related]
6. The mechanism of hydrogen evolution in Cu(bztpen)-catalysed water reduction: a DFT study. Liao RZ; Wang M; Sun L; Siegbahn PE Dalton Trans; 2015 Jun; 44(21):9736-9. PubMed ID: 25928325 [TBL] [Abstract][Full Text] [Related]
7. Study on the interaction between Cu phen2+3 and bovine serum albumin by spectroscopic methods. Zhang YZ; Zhang XP; Hou HN; Dai J; Liu Y Biol Trace Elem Res; 2008 Mar; 121(3):276-87. PubMed ID: 17960331 [TBL] [Abstract][Full Text] [Related]
8. Interaction between an (-)-epigallocatechin-3-gallate-copper complex and bovine serum albumin: Fluorescence, circular dichroism, HPLC, and docking studies. Zhang L; Liu Y; Wang Y Food Chem; 2019 Dec; 301():125294. PubMed ID: 31382111 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic Insight into the O Gorantla KR; Mallik BS J Phys Chem A; 2021 Jul; 125(29):6461-6473. PubMed ID: 34282907 [TBL] [Abstract][Full Text] [Related]
10. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu Yousuf I; Bashir M; Arjmand F; Tabassum S J Biomol Struct Dyn; 2019 Aug; 37(12):3290-3304. PubMed ID: 30124142 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic investigation of the interaction between copper (II) 2-oxo-propionic acid salicyloyl hydrazone complex and bovine serum albumin. Mei P; Zhang YZ; Zhang XP; Yan CX; Zhang H; Liu Y Biol Trace Elem Res; 2008 Sep; 124(3):269-82. PubMed ID: 18478191 [TBL] [Abstract][Full Text] [Related]
12. The effect of Cu2+ on interaction between flavonoids with different C-ring substituents and bovine serum albumin: structure-affinity relationship aspect. Zhang Y; Shi S; Sun X; Xiong X; Peng M J Inorg Biochem; 2011 Dec; 105(12):1529-37. PubMed ID: 22071075 [TBL] [Abstract][Full Text] [Related]
13. Multi-spectroscopic study on interaction of bovine serum albumin with lomefloxacin-copper(II) complex. Lu JQ; Jin F; Sun TQ; Zhou XW Int J Biol Macromol; 2007 Mar; 40(4):299-304. PubMed ID: 17030362 [TBL] [Abstract][Full Text] [Related]
14. Interaction of Di-2-pyridylketone 2-pyridine Carboxylic Acid Hydrazone and Its Copper Complex with BSA: Effect on Antitumor Activity as Revealed by Spectroscopic Studies. Li C; Huang T; Fu Y; Liu Y; Zhou S; Qi Z; Li C Molecules; 2016 Apr; 21(5):. PubMed ID: 27136517 [TBL] [Abstract][Full Text] [Related]
15. Interaction of copper (II) complexes by bovine serum albumin: spectroscopic and calorimetric insights. Singh N; Pagariya D; Jain S; Naik S; Kishore N J Biomol Struct Dyn; 2018 Jul; 36(9):2449-2462. PubMed ID: 28707518 [TBL] [Abstract][Full Text] [Related]
16. Spectroscopic studies on interaction of BSA and Eu(III) complexes with H5ph-dtpa and H5dtpa ligands. Kong D; Qin C; Fan P; Li B; Wang J Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():372-81. PubMed ID: 25617848 [TBL] [Abstract][Full Text] [Related]
17. Multispectroscopic and computational evaluation of the binding of flavonoids with bovine serum albumin in the presence of Cu Zhao J; Huang L; Li R; Zhang Z; Chen J; Tang H Food Chem; 2022 Aug; 385():132656. PubMed ID: 35279499 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic studies of interaction between CuO nanoparticles and bovine serum albumin. Esfandfar P; Falahati M; Saboury A J Biomol Struct Dyn; 2016 Sep; 34(9):1962-8. PubMed ID: 26555383 [TBL] [Abstract][Full Text] [Related]
20. Investigations on the interaction between cuprous oxide nanocubes and bovine serum albumin with comprehensive spectroscopic methods. Ju P; Fan H; Liu T; Cui L; Ai S; Wu X Biol Trace Elem Res; 2011 Dec; 144(1-3):1405-18. PubMed ID: 21625917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]