These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36126552)

  • 1. Jointly estimating bias field and reconstructing uniform MRI image by deep learning.
    Song W; Zeng C; Zhang X; Wang Z; Huang Y; Lin J; Wei W; Qu X
    J Magn Reson; 2022 Oct; 343():107301. PubMed ID: 36126552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A level set method based on domain transformation and bias correction for MRI brain tumor segmentation.
    Khosravanian A; Rahmanimanesh M; Keshavarzi P; Mozaffari S
    J Neurosci Methods; 2021 Mar; 352():109091. PubMed ID: 33515604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error.
    Gispert JD; Reig S; Pascau J; Vaquero JJ; García-Barreno P; Desco M
    Hum Brain Mapp; 2004 Jun; 22(2):133-44. PubMed ID: 15108301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust generative asymmetric GMM for brain MR image segmentation.
    Ji Z; Xia Y; Zheng Y
    Comput Methods Programs Biomed; 2017 Nov; 151():123-138. PubMed ID: 28946994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensity inhomogeneity correction of MRI images using InhomoNet.
    Venkatesh V; Sharma N; Singh M
    Comput Med Imaging Graph; 2020 Sep; 84():101748. PubMed ID: 32679471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepN4: Learning N4ITK Bias Field Correction for T1-weighted Images.
    Kanakaraj P; Yao T; Cai LY; Lee HH; Newlin NR; Kim ME; Gao C; Pechman KR; Archer D; Hohman T; Jefferson A; Beason-Held LL; Resnick SM; ; ; Garyfallidis E; Anderson A; Schilling KG; Landman BA; Moyer D
    Neuroinformatics; 2024 Apr; 22(2):193-205. PubMed ID: 38526701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between bias field correction, intensity standardization, and noise filtering for T2-weighted MRI.
    Palumbo D; Yee B; O'Dea P; Leedy S; Viswanath S; Madabhushi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5080-3. PubMed ID: 22255481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning reconstruction in pediatric brain MRI: comparison of image quality with conventional T2-weighted MRI.
    Kim SH; Choi YH; Lee JS; Lee SB; Cho YJ; Lee SH; Shin SM; Cheon JE
    Neuroradiology; 2023 Jan; 65(1):207-214. PubMed ID: 36156109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images.
    Duong STM; Phung SL; Bouzerdoum A; Schira MM
    Magn Reson Imaging; 2020 Sep; 71():1-10. PubMed ID: 32407764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain Tissue Segmentation and Bias Field Correction of MR Image Based on Spatially Coherent FCM with Nonlocal Constraints.
    Song J; Zhang Z
    Comput Math Methods Med; 2019; 2019():4762490. PubMed ID: 30944578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI.
    Arabi H; Zeng G; Zheng G; Zaidi H
    Eur J Nucl Med Mol Imaging; 2019 Dec; 46(13):2746-2759. PubMed ID: 31264170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic brain tissue segmentation in fetal MRI using convolutional neural networks.
    Khalili N; Lessmann N; Turk E; Claessens N; Heus R; Kolk T; Viergever MA; Benders MJNL; Išgum I
    Magn Reson Imaging; 2019 Dec; 64():77-89. PubMed ID: 31181246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid measurement and correction of spatiotemporal B
    Wallace TE; Afacan O; Kober T; Warfield SK
    Magn Reson Med; 2020 Feb; 83(2):575-589. PubMed ID: 31463976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Variational Level Set Approach Based on Local Entropy for Image Segmentation and Bias Field Correction.
    Tang J; Jiang X
    Comput Math Methods Med; 2017; 2017():9174275. PubMed ID: 29279720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An anisotropic images segmentation and bias correction method.
    Chen Y; Zhang J; Yang J
    Magn Reson Imaging; 2012 Jan; 30(1):85-95. PubMed ID: 22055751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation.
    Li C; Gore JC; Davatzikos C
    Magn Reson Imaging; 2014 Sep; 32(7):913-23. PubMed ID: 24928302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. k-Space deep learning for reference-free EPI ghost correction.
    Lee J; Han Y; Ryu JK; Park JY; Ye JC
    Magn Reson Med; 2019 Dec; 82(6):2299-2313. PubMed ID: 31321809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Evaluation of Intensity Inhomogeneity Correction Methods for Structural MR Brain Images.
    Ganzetti M; Wenderoth N; Mantini D
    Neuroinformatics; 2016 Jan; 14(1):5-21. PubMed ID: 26306865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.