These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 36126581)
1. A self-assembly hydrophobic oCDs/Ag nanoparticles SERS sensor for ultrasensitive melamine detection in milk. Qiu J; Chu Y; He Q; Han Y; Zhang Y; Han L Food Chem; 2023 Feb; 402():134241. PubMed ID: 36126581 [TBL] [Abstract][Full Text] [Related]
2. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine. Zhang C; You T; Yang N; Gao Y; Jiang L; Yin P Food Chem; 2019 Jul; 287():363-368. PubMed ID: 30857711 [TBL] [Abstract][Full Text] [Related]
3. Rapid Detection of Melamine in Tap Water and Milk Using Conjugated "One-Step" Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor. Hu Y; Lu X J Food Sci; 2016 May; 81(5):N1272-80. PubMed ID: 27061315 [TBL] [Abstract][Full Text] [Related]
4. Performance-enhancing methods for Au film over nanosphere surface-enhanced Raman scattering substrate and melamine detection application. Wang JF; Wu XZ; Xiao R; Dong PT; Wang CG PLoS One; 2014; 9(6):e97976. PubMed ID: 24886913 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous colorimetric and surface-enhanced Raman scattering detection of melamine from milk. Liu S; Kannegulla A; Kong X; Sun R; Liu Y; Wang R; Yu Q; Wang AX Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 231():118130. PubMed ID: 32044710 [TBL] [Abstract][Full Text] [Related]
6. Ag-nanoparticles on UF-microsphere as an ultrasensitive SERS substrate with unique features for rhodamine 6G detection. Hao Z; Mansuer M; Guo Y; Zhu Z; Wang X Talanta; 2016; 146():533-9. PubMed ID: 26695301 [TBL] [Abstract][Full Text] [Related]
7. Silver-nanoparticle-grafted silicon nanocones for reproducible Raman detection of trace contaminants in complex liquid environments. Wang Z; Zhu Q; Wang Y; Dou S; Chen Q; Lu N Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 251():119447. PubMed ID: 33461135 [TBL] [Abstract][Full Text] [Related]
8. Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals. Wu W; Liu L; Dai Z; Liu J; Yang S; Zhou L; Xiao X; Jiang C; Roy VA Sci Rep; 2015 May; 5():10208. PubMed ID: 25974125 [TBL] [Abstract][Full Text] [Related]
9. One-step detection of melamine in milk by hollow gold chip based on surface-enhanced Raman scattering. Guo Z; Cheng Z; Li R; Chen L; Lv H; Zhao B; Choo J Talanta; 2014 May; 122():80-4. PubMed ID: 24720965 [TBL] [Abstract][Full Text] [Related]
10. Self-assembled C-Ag hybrid nanoparticle on nanoporous GaN enabled ultra-high enhancement factor SERS sensor for sensitive thiram detection. Zhou H; Qiu J; Zhang Y; Liang Y; Han L; Zhang Y J Hazard Mater; 2024 May; 469():133868. PubMed ID: 38447363 [TBL] [Abstract][Full Text] [Related]
11. Hydrophobic plasmonic silver membrane as SERS-active catcher for rapid and ultrasensitive Cu(II) detection. He L; Ding K; Luo J; Li Q; Tan J; Hu J J Hazard Mater; 2022 Oct; 440():129731. PubMed ID: 35963095 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous enzymatic and SERS properties of bifunctional chitosan-modified popcorn-like Au-Ag nanoparticles for high sensitive detection of melamine in milk powder. Li J; Zhang G; Wang L; Shen A; Hu J Talanta; 2015 Aug; 140():204-211. PubMed ID: 26048843 [TBL] [Abstract][Full Text] [Related]
13. Ultrafast self-assembly of silver nanostructures on carbon-coated copper grids for surface-enhanced Raman scattering detection of trace melamine. Cao Q; Yuan K; Yu J; Delaunay JJ; Che R J Colloid Interface Sci; 2017 Mar; 490():23-28. PubMed ID: 27870955 [TBL] [Abstract][Full Text] [Related]
14. Silver deposited polystyrene (PS) microspheres for surface-enhanced Raman spectroscopic-encoding and rapid label-free detection of melamine in milk powder. Zhao Y; Luo W; Kanda P; Cheng H; Chen Y; Wang S; Huan S Talanta; 2013 Sep; 113():7-13. PubMed ID: 23708616 [TBL] [Abstract][Full Text] [Related]
15. Ultrasensitive detection of contaminants in milk using a novel NMS-Ag modified water-resistant paper substrate. Su R; Li S; Su Y; Wang Z; Gao M Food Chem; 2024 Dec; 461():140843. PubMed ID: 39178549 [TBL] [Abstract][Full Text] [Related]
16. High and stable surface-enhanced Raman spectroscopy activity of h-BN nanosheet/Au Ge K; Wu Q; Li Y; Gu Y Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120952. PubMed ID: 35123190 [TBL] [Abstract][Full Text] [Related]
17. SERS-active nanocellulose substrate via in-situ photochemical synthesis. Wu J; Xi J; Chen H; Liu Y; Zhang L; Li P; Wu W Int J Biol Macromol; 2022 Aug; 215():368-376. PubMed ID: 35691436 [TBL] [Abstract][Full Text] [Related]
18. A Three-Dimensional Hydrophobic Surface-Enhanced Raman Scattering Sensor via a Silver-Coated Polytetrafluoroethylene Membrane for the Direct Trace Detection of Molecules in Water. Tao G; Li J; Mu Y; Zhang X Biosensors (Basel); 2024 Feb; 14(2):. PubMed ID: 38392007 [TBL] [Abstract][Full Text] [Related]
19. Self-Assembled Three-Dimensional Polyamide/Silver Nanoparticle Pore Array as a Highly Sensitive and Reproducible SERS Substrate for Pesticide Detection in Water. Zhang T; Zhang L; Wu S; Wang G; Huang X; Li W; Liu C; Kong Z; Li J; Lu R J Agric Food Chem; 2024 Jan; 72(1):865-873. PubMed ID: 38150720 [TBL] [Abstract][Full Text] [Related]
20. Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced Raman scattering device. Li D; Lv DY; Zhu QX; Li H; Chen H; Wu MM; Chai YF; Lu F Food Chem; 2017 Jun; 224():382-389. PubMed ID: 28159284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]