These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 36126597)
1. Can microalgae grown in wastewater reduce the use of inorganic fertilizers? Álvarez-González A; Uggetti E; Serrano L; Gorchs G; Ferrer I; Díez-Montero R J Environ Manage; 2022 Dec; 323():116224. PubMed ID: 36126597 [TBL] [Abstract][Full Text] [Related]
2. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Renuka N; Prasanna R; Sood A; Ahluwalia AS; Bansal R; Babu S; Singh R; Shivay YS; Nain L Environ Sci Pollut Res Int; 2016 Apr; 23(7):6608-20. PubMed ID: 26638970 [TBL] [Abstract][Full Text] [Related]
3. The effects of microalgae use as a biofertilizer on soil and plant before and after its anaerobic (co-)digestion with food waste. Castro IMP; Rosa A; Borges A; Cunha F; Passos F Sci Total Environ; 2024 Jul; 934():173301. PubMed ID: 38759922 [TBL] [Abstract][Full Text] [Related]
4. Using microalgae to reduce the use of conventional fertilizers in hydroponics and soil-based cultivation. Zhang Z; Xu M; Fan Y; Zhang L; Wang H Sci Total Environ; 2024 Feb; 912():169424. PubMed ID: 38128652 [TBL] [Abstract][Full Text] [Related]
5. Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Silambarasan S; Logeswari P; Sivaramakrishnan R; Incharoensakdi A; Cornejo P; Kamaraj B; Chi NTL Chemosphere; 2021 Apr; 268():129323. PubMed ID: 33359999 [TBL] [Abstract][Full Text] [Related]
6. The potential of wastewater grown microalgae for agricultural purposes: Contaminants of emerging concern, heavy metals and pathogens assessment. Álvarez-González A; Uggetti E; Serrano L; Gorchs G; Escolà Casas M; Matamoros V; Gonzalez-Flo E; Díez-Montero R Environ Pollut; 2023 May; 324():121399. PubMed ID: 36878273 [TBL] [Abstract][Full Text] [Related]
7. Valorization of treated swine wastewater and generated biomass by microalgae: Their effects and salt tolerance mechanisms on wheat seedling growth. Liu XY; Hong Y; Zhang YW; Li LH Environ Res; 2024 Jun; 251(Pt 2):118664. PubMed ID: 38499222 [TBL] [Abstract][Full Text] [Related]
8. Biofertilizers from wastewater treatment as a potential source of mineral nutrients for growth of amaranth plants. Ferreira ET; Barrochelo SC; de Melo SP; Araujo T; Xavier ACC; Cechin I; da Silva GHR PLoS One; 2023; 18(12):e0295624. PubMed ID: 38117795 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous remediation of nutrients from liquid anaerobic digestate and municipal wastewater by the microalga Scenedesmus sp. AMDD grown in continuous chemostats. Dickinson KE; Bjornsson WJ; Garrison LL; Whitney CG; Park KC; Banskota AH; McGinn PJ J Appl Microbiol; 2015 Jan; 118(1):75-83. PubMed ID: 25363842 [TBL] [Abstract][Full Text] [Related]
10. Strategic valorization of de-oiled microalgal biomass waste as biofertilizer for sustainable and improved agriculture of rice (Oryza sativa L.) crop. Nayak M; Swain DK; Sen R Sci Total Environ; 2019 Sep; 682():475-484. PubMed ID: 31128367 [TBL] [Abstract][Full Text] [Related]
11. Phosphorus from wastewater to crops: An alternative path involving microalgae. Solovchenko A; Verschoor AM; Jablonowski ND; Nedbal L Biotechnol Adv; 2016; 34(5):550-564. PubMed ID: 26795876 [TBL] [Abstract][Full Text] [Related]
12. Valorization of poultry litter using Acutodesmus obliquus and its integrated application for lipids and fertilizer production. Musetsho P; Renuka N; Guldhe A; Singh P; Pillay K; Rawat I; Bux F Sci Total Environ; 2021 Nov; 796():149018. PubMed ID: 34274677 [TBL] [Abstract][Full Text] [Related]
13. Nutrient recovery from wastewaters by microalgae and its potential application as bio-char. Santos FM; Pires JCM Bioresour Technol; 2018 Nov; 267():725-731. PubMed ID: 30082133 [TBL] [Abstract][Full Text] [Related]
14. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147 [TBL] [Abstract][Full Text] [Related]
15. Treatment of clean in place (CIP) wastewater using microalgae: Nutrient upcycling and value-added byproducts production. Su Y; Jacobsen C Sci Total Environ; 2021 Sep; 785():147337. PubMed ID: 33932664 [TBL] [Abstract][Full Text] [Related]
16. Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy. Díaz V; Leyva-Díaz JC; Almécija MC; Poyatos JM; Del Mar Muñío M; Martín-Pascual J Bioresour Technol; 2022 Nov; 363():127968. PubMed ID: 36115507 [TBL] [Abstract][Full Text] [Related]
17. Integrating anaerobic digestion and microalgae cultivation for dairy wastewater treatment and potential biochemicals production from the harvested microalgal biomass. Kusmayadi A; Lu PH; Huang CY; Leong YK; Yen HW; Chang JS Chemosphere; 2022 Mar; 291(Pt 1):133057. PubMed ID: 34838828 [TBL] [Abstract][Full Text] [Related]
18. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Nagarajan D; Lee DJ; Chen CY; Chang JS Bioresour Technol; 2020 Apr; 302():122817. PubMed ID: 32007309 [TBL] [Abstract][Full Text] [Related]
20. Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective. Renuka N; Ratha SK; Kader F; Rawat I; Bux F J Environ Manage; 2021 Nov; 297():113257. PubMed ID: 34303940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]