These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36126824)

  • 21. Study of a pingyangmycin delivery system: Zein/Zein-SAIB in situ gels.
    Gao Z; Ding P; Zhang L; Shi J; Yuan S; Wei J; Chen D
    Int J Pharm; 2007 Jan; 328(1):57-64. PubMed ID: 16939703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
    Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 4D printed tri-segment nerve conduit using zein gel as the ink for repair of rat sciatic nerve large defect.
    Lin Y; Yu J; Zhang Y; Hayat U; Liu C; Huang X; Lin H; Wang JY
    Biomater Adv; 2023 Aug; 151():213473. PubMed ID: 37245344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water-responsive 4D printing based on self-assembly of hydrophobic protein "Zein" for the control of degradation rate and drug release.
    Zhang Y; Raza A; Xue YQ; Yang G; Hayat U; Yu J; Liu C; Wang HJ; Wang JY
    Bioact Mater; 2023 May; 23():343-352. PubMed ID: 36474653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Moxifloxacin HCl-Incorporated Aqueous-Induced Nitrocellulose-Based In Situ Gel for Periodontal Pocket Delivery.
    Senarat S; Rojviriya C; Sarunyakasitrin K; Charoentreeraboon J; Pichayakorn W; Phaechamud T
    Gels; 2023 Jul; 9(7):. PubMed ID: 37504451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks.
    Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J
    Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rheological studies of cellulose nanocrystal/dimethyl sulfoxide organogels.
    Xu Q; Bu F; Sun C; Huang X; Luo H
    Carbohydr Polym; 2023 Jul; 312():120830. PubMed ID: 37059557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.
    Phaechamud T; Mahadlek J
    Int J Pharm; 2015 Oct; 494(1):381-92. PubMed ID: 26302862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure.
    Karamat-Ullah N; Demidov Y; Schramm M; Grumme D; Auer J; Bohr C; Brachvogel B; Maleki H
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4545-4556. PubMed ID: 34415718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels.
    Chen Y; Xiong X; Liu X; Cui R; Wang C; Zhao G; Zhi W; Lu M; Duan K; Weng J; Qu S; Ge J
    J Mater Chem B; 2020 Jul; 8(25):5500-5514. PubMed ID: 32484194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass.
    El-Rashidy AA; Waly G; Gad A; Roether JA; Hum J; Yang Y; Detsch R; Hashem AA; Sami I; Goldmann WH; Boccaccini AR
    Biomed Mater; 2018 Aug; 13(6):065006. PubMed ID: 30088480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents.
    Zhou L; Ramezani H; Sun M; Xie M; Nie J; Lv S; Cai J; Fu J; He Y
    Biomater Sci; 2020 Sep; 8(18):5020-5028. PubMed ID: 32844842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.
    Hung KC; Tseng CS; Dai LG; Hsu SH
    Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-adhesive, ionic-conductive, mechanically robust cellulose-based organogels with anti-freezing and rapid recovery properties for flexible sensors.
    Zhou Y; Li R; Wan L; Zhang F; Liu Z; Cao Y
    Int J Biol Macromol; 2023 Jun; 240():124171. PubMed ID: 36966862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative studies for ciprofloxacin hydrochloride pre-formed gels and thermally triggered (in situ) gels: in vitro and in vivo appraisal using a bacterial keratitis model in rabbits.
    Abdelkader H; Mansour HF
    Pharm Dev Technol; 2015 Jun; 20(4):410-6. PubMed ID: 24392945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization.
    Camargo JA; Sapin A; Nouvel C; Daloz D; Leonard M; Bonneaux F; Six JL; Maincent P
    Drug Dev Ind Pharm; 2013 Jan; 39(1):146-55. PubMed ID: 22397675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Injectable zein gel with in situ self-assembly as hemostatic material.
    Raza A; Zhang Y; Hayat U; Liu C; Song JL; Shen N; Chao Y; Wang HJ; Wang JY
    Biomater Adv; 2023 Feb; 145():213225. PubMed ID: 36527960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Printing of Antibacterial Polymer Devices Based on Nitric Oxide Release from Embedded
    Li W; Yang Y; Ehrhardt CJ; Lewinski N; Gascoyne D; Lucas G; Zhao H; Wang X
    ACS Appl Bio Mater; 2021 Oct; 4(10):7653-7662. PubMed ID: 35006705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Novel "Inks" for 3D Printing Using High-Throughput Screening: Bioresorbable Photocurable Polymers for Controlled Drug Delivery.
    Louzao I; Koch B; Taresco V; Ruiz-Cantu L; Irvine DJ; Roberts CJ; Tuck C; Alexander C; Hague R; Wildman R; Alexander MR
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6841-6848. PubMed ID: 29322768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.