These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 36126824)
41. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905 [TBL] [Abstract][Full Text] [Related]
42. Mathematical and Pharmacokinetic Approaches for the Design of New 3D Printing Inks Using Ricobendazole. Barberis ME; Palma SD; Gonzo EE; Bermúdez JM; Lorier M; Ibarra M; Real JP Pharm Res; 2022 Sep; 39(9):2277-2290. PubMed ID: 35851629 [TBL] [Abstract][Full Text] [Related]
43. Aqueous coating dispersion (pseudolatex) of zein improves formulation of sustained-release tablets containing very water-soluble drug. Li XN; Guo HX; Heinamaki J J Colloid Interface Sci; 2010 May; 345(1):46-53. PubMed ID: 20129615 [TBL] [Abstract][Full Text] [Related]
44. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering. Müller M; Fisch P; Molnar M; Eggert S; Binelli M; Maniura-Weber K; Zenobi-Wong M Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110510. PubMed ID: 31924006 [TBL] [Abstract][Full Text] [Related]
45. In situ-forming pharmaceutical organogels based on the self-assembly of L-alanine derivatives. Couffin-Hoarau AC; Motulsky A; Delmas P; Leroux JC Pharm Res; 2004 Mar; 21(3):454-7. PubMed ID: 15070096 [TBL] [Abstract][Full Text] [Related]
46. Organogels in drug delivery. Murdan S Expert Opin Drug Deliv; 2005 May; 2(3):489-505. PubMed ID: 16296770 [TBL] [Abstract][Full Text] [Related]
47. Preparation of ciprofloxacin loaded zein conduits with good mechanical properties and antibacterial activity. Hayat U; Raza A; Wang HJ; Wang JY Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110766. PubMed ID: 32279795 [TBL] [Abstract][Full Text] [Related]
48. Investigation of injectable drospirenone organogels with regard to their rheology and comparison to non-stabilized oil-based drospirenone suspensions. Nippe S; General S Drug Dev Ind Pharm; 2015 Apr; 41(4):681-91. PubMed ID: 24621345 [TBL] [Abstract][Full Text] [Related]
49. Applications of physical and chemical treatments in plant-based gels for food 3D printing. Liu Z; Hu X; Lu S; Xu B; Bai C; Ma T; Song Y J Food Sci; 2024 Jul; 89(7):3917-3934. PubMed ID: 38829741 [TBL] [Abstract][Full Text] [Related]
50. Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2. Zhou P; Xia Y; Cheng X; Wang P; Xie Y; Xu S Biomaterials; 2014 Dec; 35(38):10033-45. PubMed ID: 25260421 [TBL] [Abstract][Full Text] [Related]
51. Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1,3:2,4-dibenzylidene sorbitol as the gelator. Lan Y; Corradini MG; Liu X; May TE; Borondics F; Weiss RG; Rogers MA Langmuir; 2014 Dec; 30(47):14128-42. PubMed ID: 24849281 [TBL] [Abstract][Full Text] [Related]
52. Self-assembly of 2,3-dihydroxycholestane steroids into supramolecular organogels as a soft template for the in-situ generation of silicate nanomaterials. Edelsztein VC; Mac Cormack AS; Ciarlantini M; Di Chenna PH Beilstein J Org Chem; 2013; 9():1826-36. PubMed ID: 24062849 [TBL] [Abstract][Full Text] [Related]
53. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428 [TBL] [Abstract][Full Text] [Related]
54. An examination of the rheological and mucoadhesive properties of poly(acrylic acid) organogels designed as platforms for local drug delivery to the oral cavity. Jones DS; Muldoon BC; Woolfson AD; Sanderson FD J Pharm Sci; 2007 Oct; 96(10):2632-46. PubMed ID: 17702045 [TBL] [Abstract][Full Text] [Related]
55. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy. Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448 [TBL] [Abstract][Full Text] [Related]
56. Computational Insight of Phase Transformation and Drug Release Behaviour of Doxycycline-Loaded Ibuprofen-Based In-Situ Forming Gel. Puyathorn N; Tamdee P; Sirirak J; Okonogi S; Phaechamud T; Chantadee T Pharmaceutics; 2023 Sep; 15(9):. PubMed ID: 37765285 [TBL] [Abstract][Full Text] [Related]
58. Effect of Polymer Permeability and Solvent Removal Rate on Zhang X; Yang L; Zhang C; Liu D; Meng S; Zhang W; Meng S Pharmaceutics; 2019 Oct; 11(10):. PubMed ID: 31658642 [TBL] [Abstract][Full Text] [Related]
59. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
60. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]