BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36127324)

  • 1. Deciphering multi-way interactions in the human genome.
    Dotson GA; Chen C; Lindsly S; Cicalo A; Dilworth S; Ryan C; Jeyarajan S; Meixner W; Stansbury C; Pickard J; Beckloff N; Surana A; Wicha M; Muir LA; Rajapakse I
    Nat Commun; 2022 Sep; 13(1):5498. PubMed ID: 36127324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does multi-way, long-range chromatin contact data advance 3D genome reconstruction?
    Olshen AB; Segal MR
    BMC Bioinformatics; 2023 Feb; 24(1):64. PubMed ID: 36829114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying multi-locus chromatin contacts in human cells using tethered multiple 3C.
    Ay F; Vu TH; Zeitz MJ; Varoquaux N; Carette JE; Vert JP; Hoffman AR; Noble WS
    BMC Genomics; 2015 Feb; 16(1):121. PubMed ID: 25887659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian inference of chromatin structure ensembles from population-averaged contact data.
    Carstens S; Nilges M; Habeck M
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7824-7830. PubMed ID: 32193349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epstein-Barr Virus Episome Physically Interacts with Active Regions of the Host Genome in Lymphoblastoid Cells.
    Wang L; Laing J; Yan B; Zhou H; Ke L; Wang C; Narita Y; Zhang Z; Olson MR; Afzali B; Zhao B; Kazemian M
    J Virol; 2020 Nov; 94(24):. PubMed ID: 32999023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships.
    Lohia R; Fox N; Gillis J
    Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data.
    Saberi S; Farré P; Cuvier O; Emberly E
    BMC Bioinformatics; 2015 May; 16():171. PubMed ID: 26001583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-task graph-clustering approach for chromosome conformation capture data sets identifies conserved modules of chromosomal interactions.
    Fotuhi Siahpirani A; Ay F; Roy S
    Genome Biol; 2016 May; 17(1):114. PubMed ID: 27233632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ProbC: joint modeling of epigenome and transcriptome effects in 3D genome.
    Sefer E
    BMC Genomics; 2022 Apr; 23(1):287. PubMed ID: 35397520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling.
    Kalhor R; Tjong H; Jayathilaka N; Alber F; Chen L
    Nat Biotechnol; 2011 Dec; 30(1):90-8. PubMed ID: 22198700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DLoopCaller: A deep learning approach for predicting genome-wide chromatin loops by integrating accessible chromatin landscapes.
    Wang S; Zhang Q; He Y; Cui Z; Guo Z; Han K; Huang DS
    PLoS Comput Biol; 2022 Oct; 18(10):e1010572. PubMed ID: 36206320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hi-C Analysis to Identify Genome-Wide Chromatin Structural Aberration in Cancer.
    Okabe A; Kaneda A
    Methods Mol Biol; 2023; 2519():127-140. PubMed ID: 36066718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unified framework for inferring the multi-scale organization of chromatin domains from Hi-C.
    Bak JH; Kim MH; Liu L; Hyeon C
    PLoS Comput Biol; 2021 Mar; 17(3):e1008834. PubMed ID: 33724986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.
    Tjong H; Li W; Kalhor R; Dai C; Hao S; Gong K; Zhou Y; Li H; Zhou XJ; Le Gros MA; Larabell CA; Chen L; Alber F
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1663-72. PubMed ID: 26951677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of 3D genome architecture via a two-stage algorithm.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO.
    Wang H; Yang J; Zhang Y; Qian J; Wang J
    Nat Commun; 2022 May; 13(1):2645. PubMed ID: 35551182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oncogenic transcription factors as master regulators of chromatin topology: a new role for ERG in prostate cancer.
    Elemento O; Rubin MA; Rickman DS
    Cell Cycle; 2012 Sep; 11(18):3380-3. PubMed ID: 22918253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin Conformation Capture-Based Analysis of Nuclear Architecture.
    Grob S; Grossniklaus U
    Methods Mol Biol; 2017; 1456():15-32. PubMed ID: 27770354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.