These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 36127854)

  • 61. Perspectives for integrated insect pest protection in oilseed rape breeding.
    Obermeier C; Mason AS; Meiners T; Petschenka G; Rostás M; Will T; Wittkop B; Austel N
    Theor Appl Genet; 2022 Nov; 135(11):3917-3946. PubMed ID: 35294574
    [TBL] [Abstract][Full Text] [Related]  

  • 62. First transgenic trait for control of plant bugs and thrips in cotton.
    Akbar W; Gowda A; Ahrens JE; Stelzer JW; Brown RS; Bollman SL; Greenplate JT; Gore J; Catchot AL; Lorenz G; Stewart SD; Kerns DL; Greene JK; Toews MD; Herbert DA; Reisig DD; Sword GA; Ellsworth PC; Godfrey LD; Clark TL
    Pest Manag Sci; 2019 Mar; 75(3):867-877. PubMed ID: 30324740
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Strategies for Enhanced Crop Resistance to Insect Pests.
    Douglas AE
    Annu Rev Plant Biol; 2018 Apr; 69():637-660. PubMed ID: 29144774
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Assessment of the effects of climate change on the occurrence of tomato invasive insect pests in Uganda.
    Gno-Solim Ela N; Olago D; Akinyi AD; Tonnang HEZ
    Heliyon; 2023 Feb; 9(2):e13702. PubMed ID: 36865473
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Exploiting chemical ecology to manage hyperparasitoids in biological control of arthropod pests.
    Cusumano A; Harvey JA; Bourne ME; Poelman EH; G de Boer J
    Pest Manag Sci; 2020 Feb; 76(2):432-443. PubMed ID: 31713945
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Elicitation of biomolecules as host defense arsenals during insect attacks on tea plants (Camellia sinensis (L.) Kuntze).
    Naskar S; Roy C; Ghosh S; Mukhopadhyay A; Hazarika LK; Chaudhuri RK; Roy S; Chakraborti D
    Appl Microbiol Biotechnol; 2021 Oct; 105(19):7187-7199. PubMed ID: 34515843
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Significance and interpretation of molecular diagnostics for insecticide resistance management of agricultural pests.
    Van Leeuwen T; Dermauw W; Mavridis K; Vontas J
    Curr Opin Insect Sci; 2020 Jun; 39():69-76. PubMed ID: 32361620
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Improving pest monitoring networks using a simulation-based approach to contribute to pesticide reduction.
    Cros MJ; Aubertot JN; Gaba S; Reboud X; Sabbadin R; Peyrard N
    Theor Popul Biol; 2021 Oct; 141():24-33. PubMed ID: 34153290
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Killing two bugs with one stone: a perspective for targeting multiple pest species by incorporating reproductive interference into sterile insect technique.
    Honma A; Kumano N; Noriyuki S
    Pest Manag Sci; 2019 Mar; 75(3):571-577. PubMed ID: 30198215
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Induced plant defences in biological control of arthropod pests: a double-edged sword.
    Pappas ML; Broekgaarden C; Broufas GD; Kant MR; Messelink GJ; Steppuhn A; Wäckers F; van Dam NM
    Pest Manag Sci; 2017 Sep; 73(9):1780-1788. PubMed ID: 28387028
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Epigenetic regulations as drivers of insecticide resistance and resilience to climate change in arthropod pests.
    Mogilicherla K; Roy A
    Front Genet; 2022; 13():1044980. PubMed ID: 36685945
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved.
    Raderschall CA; Vico G; Lundin O; Taylor AR; Bommarco R
    Glob Chang Biol; 2021 Jan; 27(1):71-83. PubMed ID: 33118276
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Chemical diversity rather than cultivar diversity predicts natural enemy control of herbivore pests.
    Hauri KC; Glassmire AE; Wetzel WC
    Ecol Appl; 2021 Apr; 31(3):e02289. PubMed ID: 33423331
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Role of gut symbionts of insect pests: A novel target for insect-pest control.
    Rupawate PS; Roylawar P; Khandagale K; Gawande S; Ade AB; Jaiswal DK; Borgave S
    Front Microbiol; 2023; 14():1146390. PubMed ID: 36992933
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Plant Allelochemicals as Sources of Insecticides.
    Tlak Gajger I; Dar SA
    Insects; 2021 Feb; 12(3):. PubMed ID: 33668349
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A multi-scale, landscape approach to predicting insect populations in agroecosystems.
    O'Rourke ME; Rienzo-Stack K; Power AG
    Ecol Appl; 2011 Jul; 21(5):1782-91. PubMed ID: 21830718
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The impact of restrictions on neonicotinoid and fipronil insecticides on pest management in maize, oilseed rape and sunflower in eight European Union regions.
    Kathage J; Castañera P; Alonso-Prados JL; Gómez-Barbero M; Rodríguez-Cerezo E
    Pest Manag Sci; 2018 Jan; 74(1):88-99. PubMed ID: 28842940
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Increasing crop field size does not consistently exacerbate insect pest problems.
    Rosenheim JA; Cluff E; Lippey MK; Cass BN; Paredes D; Parsa S; Karp DS; Chaplin-Kramer R
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2208813119. PubMed ID: 36067287
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Insect-plant-pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture.
    Trębicki P; Dáder B; Vassiliadis S; Fereres A
    Insect Sci; 2017 Dec; 24(6):975-989. PubMed ID: 28843026
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evaluating the pesticidal impact of plant protease inhibitors: lethal weaponry in the co-evolutionary battle.
    Pandey A; Yadav R; Sanyal I
    Pest Manag Sci; 2022 Mar; 78(3):855-868. PubMed ID: 34570437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.