These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36127879)

  • 1. Inferences from FRAP data are model dependent: A subdiffusive analysis.
    Alexander AM; Lawley SD
    Biophys J; 2022 Oct; 121(20):3795-3810. PubMed ID: 36127879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subdiffusion-limited fractional reaction-subdiffusion equations with affine reactions: Solution, stochastic paths, and applications.
    Lawley SD
    Phys Rev E; 2020 Oct; 102(4-1):042125. PubMed ID: 33212732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence recovery after photobleaching: the case of anomalous diffusion.
    Lubelski A; Klafter J
    Biophys J; 2008 Jun; 94(12):4646-53. PubMed ID: 18326658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study.
    Saxton MJ
    Biophys J; 2001 Oct; 81(4):2226-40. PubMed ID: 11566793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Simulation and FRAP Experiments Show That the Plasma Membrane Binding Protein PH-EFA6 Does Not Exhibit Anomalous Subdiffusion in Cells.
    Favard C
    Biomolecules; 2018 Sep; 8(3):. PubMed ID: 30189682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling.
    Sadegh Zadeh K; Montas HJ; Shirmohammadi A
    Theor Biol Med Model; 2006 Oct; 3():36. PubMed ID: 17034642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter Identifiability in PDE Models of Fluorescence Recovery After Photobleaching.
    Ciocanel MV; Ding L; Mastromatteo L; Reichheld S; Cabral S; Mowry K; Sandstede B
    Bull Math Biol; 2024 Mar; 86(4):36. PubMed ID: 38430382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Parameter Inference from FRAP Data: an Analysis Motivated by Pattern Formation in the Drosophila Wing Disc.
    Lin L; Othmer HG
    Bull Math Biol; 2017 Mar; 79(3):448-497. PubMed ID: 28101740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter estimation in fluorescence recovery after photobleaching: quantitative analysis of protein binding reactions and diffusion.
    Williamson DE; Sahai E; Jenkins RP; O'Dea RD; King JR
    J Math Biol; 2021 Jun; 83(1):1. PubMed ID: 34129100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of binding reactions by fluorescence recovery after photobleaching.
    Sprague BL; Pego RL; Stavreva DA; McNally JG
    Biophys J; 2004 Jun; 86(6):3473-95. PubMed ID: 15189848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are assumptions about the model type necessary in reaction-diffusion modeling? A FRAP application.
    Mai J; Trump S; Ali R; Schiltz RL; Hager G; Hanke T; Lehmann I; Attinger S
    Biophys J; 2011 Mar; 100(5):1178-88. PubMed ID: 21354390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepFRAP: Fast fluorescence recovery after photobleaching data analysis using deep neural networks.
    Wåhlstrand Skärström V; Krona A; Lorén N; Röding M
    J Microsc; 2021 May; 282(2):146-161. PubMed ID: 33247838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching.
    Braga J; McNally JG; Carmo-Fonseca M
    Biophys J; 2007 Apr; 92(8):2694-703. PubMed ID: 17259280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel computational framework for D(t) from Fluorescence Recovery after Photobleaching data reveals various anomalous diffusion types in live cell membranes.
    Kang M; Day CA; Kenworthy AK
    Traffic; 2019 Nov; 20(11):867-880. PubMed ID: 31452286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of membrane-localized binding kinetics with FRAP.
    Dushek O; Das R; Coombs D
    Eur Biophys J; 2008 Jun; 37(5):627-38. PubMed ID: 18299825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP).
    Day CA; Kraft LJ; Kang M; Kenworthy AK
    Curr Protoc Cytom; 2012 Oct; Chapter 2():Unit2.19. PubMed ID: 23042527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractional Lévy stable motion can model subdiffusive dynamics.
    Burnecki K; Weron A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021130. PubMed ID: 20866798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of fluorophore diffusion by continuous distributions of diffusion coefficients: application to photobleaching measurements of multicomponent and anomalous diffusion.
    Periasamy N; Verkman AS
    Biophys J; 1998 Jul; 75(1):557-67. PubMed ID: 9649418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-validating FRAP and FCS to quantify the impact of photobleaching on in vivo binding estimates.
    Stasevich TJ; Mueller F; Michelman-Ribeiro A; Rosales T; Knutson JR; McNally JG
    Biophys J; 2010 Nov; 99(9):3093-101. PubMed ID: 21044608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.