These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36127929)

  • 1. DIRICHLET-TREE MULTINOMIAL MIXTURES FOR CLUSTERING MICROBIOME COMPOSITIONS.
    Mao J; Ma LI
    Ann Appl Stat; 2022 Sep; 16(3):1476-1499. PubMed ID: 36127929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparse tree-based clustering of microbiome data to characterize microbiome heterogeneity in pancreatic cancer.
    Shi Y; Zhang L; Do KA; Jenq R; Peterson CB
    J R Stat Soc Ser C Appl Stat; 2023 Jan; 72(1):20-36. PubMed ID: 37034187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian biclustering for microbial metagenomic sequencing data via multinomial matrix factorization.
    Zhou F; He K; Li Q; Chapkin RS; Ni Y
    Biostatistics; 2022 Jul; 23(3):891-909. PubMed ID: 33634824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Dirichlet-Multinomial Bayes Classifier for Disease Diagnosis with Microbial Compositions.
    Gao X; Lin H; Dong Q
    mSphere; 2017; 2(6):. PubMed ID: 29242838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tascCODA: Bayesian Tree-Aggregated Analysis of Compositional Amplicon and Single-Cell Data.
    Ostner J; Carcy S; Müller CL
    Front Genet; 2021; 12():766405. PubMed ID: 34950190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data.
    Wadsworth WD; Argiento R; Guindani M; Galloway-Pena J; Shelburne SA; Vannucci M
    BMC Bioinformatics; 2017 Feb; 18(1):94. PubMed ID: 28178947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic variational variable selection for high-dimensional microbiome data.
    Dang T; Kumaishi K; Usui E; Kobori S; Sato T; Toda Y; Yamasaki Y; Tsujimoto H; Ichihashi Y; Iwata H
    Microbiome; 2022 Dec; 10(1):236. PubMed ID: 36566203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiome subcommunity learning with logistic-tree normal latent Dirichlet allocation.
    LeBlanc P; Ma L
    Biometrics; 2023 Sep; 79(3):2321-2332. PubMed ID: 36222326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Dirichlet-tree multinomial regression model for associating dietary nutrients with gut microorganisms.
    Wang T; Zhao H
    Biometrics; 2017 Sep; 73(3):792-801. PubMed ID: 28112797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroBVS: Dirichlet-tree multinomial regression models with Bayesian variable selection - an R package.
    Koslovsky MD; Vannucci M
    BMC Bioinformatics; 2020 Jul; 21(1):301. PubMed ID: 32660471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustering microbiome data using mixtures of logistic normal multinomial models.
    Fang Y; Subedi S
    Sci Rep; 2023 Sep; 13(1):14758. PubMed ID: 37679485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A logistic normal multinomial regression model for microbiome compositional data analysis.
    Xia F; Chen J; Fung WK; Li H
    Biometrics; 2013 Dec; 69(4):1053-63. PubMed ID: 24128059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Randomized feature selection based semi-supervised latent Dirichlet allocation for microbiome analysis.
    Pais N; Ravishanker N; Rajasekaran S; Weinstock G; Tran DB
    Sci Rep; 2024 Apr; 14(1):8855. PubMed ID: 38632488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dirichlet multinomial mixtures: generative models for microbial metagenomics.
    Holmes I; Harris K; Quince C
    PLoS One; 2012; 7(2):e30126. PubMed ID: 22319561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An empirical Bayes approach to normalization and differential abundance testing for microbiome data.
    Liu T; Zhao H; Wang T
    BMC Bioinformatics; 2020 Jun; 21(1):225. PubMed ID: 32493208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-DeMix: A mixture beta-multinomial model for investigating the fecal microbiome compositions.
    Liu R; Wang Y; Cheng D
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for paired-multinomial data and its application to analysis of data on a taxonomic tree.
    Shi P; Li H
    Biometrics; 2017 Dec; 73(4):1266-1278. PubMed ID: 28369713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Latent variable modeling for the microbiome.
    Sankaran K; Holmes SP
    Biostatistics; 2019 Oct; 20(4):599-614. PubMed ID: 29868846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-supervised adaptive-height snipping of the hierarchical clustering tree.
    Obulkasim A; Meijer GA; van de Wiel MA
    BMC Bioinformatics; 2015 Jan; 16(1):15. PubMed ID: 25592847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation and association analyses in microbiome study integrating multiomics in health and disease.
    Xia Y
    Prog Mol Biol Transl Sci; 2020; 171():309-491. PubMed ID: 32475527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.