BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36128237)

  • 1. Locally superengineered cascade recognition-quantification zones in nanochannels for sensitive enantiomer identification.
    Guo J; Xu H; Zhao J; Gao Z; Wu ZQ; Song YY
    Chem Sci; 2022 Aug; 13(34):9993-10002. PubMed ID: 36128237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective Target Transport-Mediated Nanozyme Decomposition for the Identification of Reducing Enantiomers in Asymmetric Nanochannel Arrays.
    Xu H; Guo J; Zhao J; Gao Z; Song YY
    Anal Chem; 2023 Sep; 95(38):14465-14474. PubMed ID: 37699410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Homochiral Metal-Organic Frameworks in TiO
    Dai Z; Guo J; Zhao C; Gao Z; Song YY
    Anal Chem; 2021 Aug; 93(33):11515-11524. PubMed ID: 34378917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A covalent organic framework nanosheet-nanochannel composite with signal amplification strategy for electrochemical enantioselective recognition.
    Yang K; Wang R; Lu J; Wang J; Liao X; Wang C
    Talanta; 2024 May; 277():126331. PubMed ID: 38823324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Covalent Organic Framework Packed Nanochannel Membrane for Enantioseparation.
    Zhang S; Zhou J; Li H
    Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202204012. PubMed ID: 35475564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective recognition in biomimetic single artificial nanochannels.
    Han C; Hou X; Zhang H; Guo W; Li H; Jiang L
    J Am Chem Soc; 2011 May; 133(20):7644-7. PubMed ID: 21534617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective Antiport in Asymmetric Nanochannels.
    Zhang S; Cheng M; Dhinakaran MK; Sun Y; Li H
    ACS Nano; 2021 Aug; 15(8):13148-13154. PubMed ID: 34319088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanochannels of Covalent Organic Frameworks for Chiral Selective Transmembrane Transport of Amino Acids.
    Yuan C; Wu X; Gao R; Han X; Liu Y; Long Y; Cui Y
    J Am Chem Soc; 2019 Dec; 141(51):20187-20197. PubMed ID: 31789030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design of mesoporous chiral MOFs as reactive pockets in nanochannels for enzyme-free identification of monosaccharide enantiomers.
    Guo J; Liu X; Zhao J; Xu H; Gao Z; Wu ZQ; Song YY
    Chem Sci; 2023 Feb; 14(7):1742-1751. PubMed ID: 36819857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and fabrication of a biomimetic nanochannel for highly sensitive arginine response in serum samples.
    Song M; Sun Z; Han C; Tian D; Li H; Jiang L
    Chemistry; 2014 Jun; 20(26):7987-93. PubMed ID: 24817268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A surface charge governed nanofluidic diode based on a single polydimethylsiloxane (PDMS) nanochannel.
    Li J; Li D
    J Colloid Interface Sci; 2021 Aug; 596():54-63. PubMed ID: 33831750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target Recognition-Triggered Peroxidase-Mimicking Activity Depression in Homochiral Nanochannels for Identifying Cystine Enantiomers.
    Xu H; Guo J; Zhao J; Gao Z; Song YY
    Anal Chem; 2023 Mar; 95(12):5436-5442. PubMed ID: 36922731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Chiral Nanosenor Based on Tip-Modified Nanochannels.
    Wang Y; Zhang S; Yan H; Quan J; Yang L; Chen X; Toimil-Molares ME; Trautmann C; Li H
    Anal Chem; 2021 Apr; 93(15):6145-6150. PubMed ID: 33826298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries.
    Ali M; Yameen B; Neumann R; Ensinger W; Knoll W; Azzaroni O
    J Am Chem Soc; 2008 Dec; 130(48):16351-7. PubMed ID: 19006302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of all-transparent polymer-based and encapsulated nanofluidic devices using nano-indentation lithography.
    Wu C; Lin TG; Zhan Z; Li Y; Tung SCH; Tang WC; Li WJ
    Microsyst Nanoeng; 2017; 3():16084. PubMed ID: 31057852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoresponsive Solid Nanochannels Membranes: Design and Applications.
    Cheng SQ; Zhang SY; Min XH; Tao MJ; Han XL; Sun Y; Liu Y
    Small; 2022 Mar; 18(12):e2105019. PubMed ID: 34910848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing Ionic Signal Enhancement with Probe Grafting Density on the Outer Surface of Nanochannels.
    Liu T; Wu X; Xu H; Ma Q; Du Q; Yuan Q; Gao P; Xia F
    Anal Chem; 2021 Sep; 93(38):13054-13062. PubMed ID: 34519478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Hydrogen Peroxide-Activated Nanochannels and Their Applications in Cancer Cell Analysis.
    Wang X; Wu J; Lv R; Bai Y; Wang C; Zhang F; Liu Z
    Anal Chem; 2022 Apr; 94(16):6234-6241. PubMed ID: 35420413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a Novel Nanofluidic Device Featuring ZnO Nanochannels.
    Kim S; Kim GH; Woo H; An T; Lim G
    ACS Omega; 2020 Feb; 5(7):3144-3150. PubMed ID: 32118130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.