These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36128237)

  • 41. An Integrated Glass Nanofluidic Device Enabling In-situ Electrokinetic Probing of Water Confined in a Single Nanochannel under Pressure-Driven Flow Conditions.
    Xu Y; Xu B
    Small; 2015 Dec; 11(46):6165-71. PubMed ID: 26485695
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics.
    Wang L; Zhang H; Yang Z; Zhou J; Wen L; Li L; Jiang L
    Phys Chem Chem Phys; 2015 Mar; 17(9):6367-73. PubMed ID: 25649179
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A highly sensitive and versatile chiral sensor based on a top-gate organic field effect transistor functionalized with thiolated β-cyclodextrin.
    Wang X; Wang Y; Wu Y; Xiao Y
    Analyst; 2019 Apr; 144(8):2611-2617. PubMed ID: 30834396
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stretching and compression of DNA by external forces under nanochannel confinement.
    Bleha T; Cifra P
    Soft Matter; 2018 Feb; 14(7):1247-1259. PubMed ID: 29363709
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermally Programmable Dynamic Capillarity in Nanofluidic Channels Grafted with Smart Elastomeric Layers.
    Banuprasad TN; DasGupta S; Chakraborty S
    Small; 2022 Dec; 18(49):e2201691. PubMed ID: 36287095
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamics of water confined in a graphene nanochannel: dependence of friction on graphene chirality.
    Yang L; Guo Y
    Nanotechnology; 2020 Mar; 31(23):235702. PubMed ID: 32066118
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Borate-driven ionic rectifiers based on sugar-bearing single nanochannels.
    Cayón VM; Laucirica G; Toum Terrones Y; Cortez ML; Pérez-Mitta G; Shen J; Hess C; Toimil-Molares ME; Trautmann C; Marmisollé WA; Azzaroni O
    Nanoscale; 2021 Jul; 13(25):11232-11241. PubMed ID: 34152340
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Scalable integration of nano-, and microfluidics with hybrid two-photon lithography.
    Vanderpoorten O; Peter Q; Challa PK; Keyser UF; Baumberg J; Kaminski CF; Knowles TPJ
    Microsyst Nanoeng; 2019; 5():40. PubMed ID: 31636930
    [TBL] [Abstract][Full Text] [Related]  

  • 50. From symmetric to asymmetric design of bio-inspired smart single nanochannels.
    Zhang H; Tian Y; Jiang L
    Chem Commun (Camb); 2013 Oct; 49(86):10048-63. PubMed ID: 24048227
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AAR-LN-DQ: Automatic anatomy recognition based disease quantification in thoracic lymph node zones via FDG PET/CT images without Nodal Delineation.
    Xu G; Udupa JK; Tong Y; Odhner D; Cao H; Torigian DA
    Med Phys; 2020 Aug; 47(8):3467-3484. PubMed ID: 32418221
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A nanochannel array based device for determination of the isoelectric point of confined proteins.
    Gao HL; Li CY; Ma FX; Wang K; Xu JJ; Chen HY; Xia XH
    Phys Chem Chem Phys; 2012 Jul; 14(26):9460-7. PubMed ID: 22652811
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of Peroxidase-like Metal-Organic Frameworks in TiO
    Xu H; Guo J; Yang L; Gao Z; Song YY
    Anal Chem; 2021 Jul; 93(27):9486-9494. PubMed ID: 34170111
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical detection of fast reaction kinetics in nanochannels with an induced flow.
    Schoch RB; Cheow LF; Han J
    Nano Lett; 2007 Dec; 7(12):3895-900. PubMed ID: 17997589
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomimetic Nanofluidic Diode Composed of Dual Amphoteric Channels Maintains Rectification Direction over a Wide pH Range.
    Sui X; Zhang Z; Zhang Z; Wang Z; Li C; Yuan H; Gao L; Wen L; Fan X; Yang L; Zhang X; Jiang L
    Angew Chem Int Ed Engl; 2016 Oct; 55(42):13056-13060. PubMed ID: 27651002
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Directly Accessible and Transferrable Nanofluidic Systems for Biomolecule Manipulation.
    Kim YS; Dincau BM; Kwon YT; Kim JH; Yeo WH
    ACS Sens; 2019 May; 4(5):1417-1423. PubMed ID: 31062586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Super-Assembled Chiral Mesostructured Heteromembranes for Smart and Sensitive Couple-Accelerated Enantioseparation.
    Huang Y; Zeng H; Xie L; Gao R; Zhou S; Liang Q; Zhang X; Liang K; Jiang L; Kong B
    J Am Chem Soc; 2022 Aug; 144(30):13794-13805. PubMed ID: 35830296
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineered Artificial Nanochannels for Nitrite Ion Harmless Conversion.
    Qian Y; Zhang Z; Kong XY; Tian W; Wen L; Jiang L
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30852-30859. PubMed ID: 30124286
    [TBL] [Abstract][Full Text] [Related]  

  • 59. cAMP sensitive nanochannels driven by conformational transition of a tripeptide-based smart polymer.
    Ji S; Xiong Y; Lu W; Li M; Wang X; Wang C; Wang D; Xiao J; Zhu Z; Chen L; Zhang Y; Qing G
    Chem Commun (Camb); 2020 Mar; 56(23):3425-3428. PubMed ID: 32100737
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of polydimethylsiloxane nanofluidic chips under AFM tip-based nanomilling process.
    Wang J; Yan Y; Geng Y; Gan Y; Fang Z
    Nanoscale Res Lett; 2019 Apr; 14(1):136. PubMed ID: 30997583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.