These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36128451)
1. Dynamic confinement of SAPO-17 cages on the selectivity control of syngas conversion. Wang H; Jiao F; Ding Y; Liu W; Xu Z; Pan X; Bao X Natl Sci Rev; 2022 Sep; 9(9):nwac146. PubMed ID: 36128451 [TBL] [Abstract][Full Text] [Related]
2. Oxide-Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer-Tropsch Synthesis. Pan X; Jiao F; Miao D; Bao X Chem Rev; 2021 Jun; 121(11):6588-6609. PubMed ID: 34032417 [TBL] [Abstract][Full Text] [Related]
3. Utilization of SAPO-18 or SAPO-35 in the bifunctional catalyst for the direct conversion of syngas to light olefins. Huang Y; Ma H; Xu Z; Qian W; Zhang H; Ying W RSC Adv; 2021 Apr; 11(23):13876-13884. PubMed ID: 35423941 [TBL] [Abstract][Full Text] [Related]
4. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling. Cheng K; Gu B; Liu X; Kang J; Zhang Q; Wang Y Angew Chem Int Ed Engl; 2016 Apr; 55(15):4725-8. PubMed ID: 26961855 [TBL] [Abstract][Full Text] [Related]
5. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO Su J; Zhou H; Liu S; Wang C; Jiao W; Wang Y; Liu C; Ye Y; Zhang L; Zhao Y; Liu H; Wang D; Yang W; Xie Z; He M Nat Commun; 2019 Mar; 10(1):1297. PubMed ID: 30899003 [TBL] [Abstract][Full Text] [Related]
6. Insights into the Diffusion Behaviors of Water over Hydrophilic/Hydrophobic Catalysts During the Conversion of Syngas to High-Quality Gasoline. Xu Y; Liang H; Li R; Zhang Z; Qin C; Xu D; Fan H; Hou B; Wang J; Gu XK; Ding M Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202306786. PubMed ID: 37470313 [TBL] [Abstract][Full Text] [Related]
7. Tuning the Crystal Phase to Form MnGaO Bai B; Guo C; Jiao F; Xiao J; Ding Y; Qu S; Pan Y; Pan X; Bao X Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202217701. PubMed ID: 37071488 [TBL] [Abstract][Full Text] [Related]
8. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins Liu X; Zhou W; Yang Y; Cheng K; Kang J; Zhang L; Zhang G; Min X; Zhang Q; Wang Y Chem Sci; 2018 May; 9(20):4708-4718. PubMed ID: 29899966 [TBL] [Abstract][Full Text] [Related]
9. Steering the reaction pathway of syngas-to-light olefins with coordination unsaturated sites of ZnGaO Li N; Zhu Y; Jiao F; Pan X; Jiang Q; Cai J; Li Y; Tong W; Xu C; Qu S; Bai B; Miao D; Liu Z; Bao X Nat Commun; 2022 May; 13(1):2742. PubMed ID: 35585075 [TBL] [Abstract][Full Text] [Related]
10. Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins. Tan L; Wang F; Zhang P; Suzuki Y; Wu Y; Chen J; Yang G; Tsubaki N Chem Sci; 2020 Mar; 11(16):4097-4105. PubMed ID: 34122875 [TBL] [Abstract][Full Text] [Related]
11. Controlled Nanostructure of Zeolite Crystal Encapsulating FeMnK Catalysts Targeting Light Olefins from Syngas. Zhu C; Zhang M; Huang C; Han Y; Fang K ACS Appl Mater Interfaces; 2020 Dec; 12(52):57950-57962. PubMed ID: 33337154 [TBL] [Abstract][Full Text] [Related]
12. Tandem Reactions over Zeolite-Based Catalysts in Syngas Conversion. Amoo CC; Xing C; Tsubaki N; Sun J ACS Cent Sci; 2022 Aug; 8(8):1047-1062. PubMed ID: 36032758 [TBL] [Abstract][Full Text] [Related]
13. Disentangling the activity-selectivity trade-off in catalytic conversion of syngas to light olefins. Jiao F; Bai B; Li G; Pan X; Ye Y; Qu S; Xu C; Xiao J; Jia Z; Liu W; Peng T; Ding Y; Liu C; Li J; Bao X Science; 2023 May; 380(6646):727-730. PubMed ID: 37200424 [TBL] [Abstract][Full Text] [Related]
14. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO Zhou W; Cheng K; Kang J; Zhou C; Subramanian V; Zhang Q; Wang Y Chem Soc Rev; 2019 Jun; 48(12):3193-3228. PubMed ID: 31106785 [TBL] [Abstract][Full Text] [Related]
15. Conditions for the Joint Conversion of CO Portillo A; Ateka A; Ereña J; Aguayo AT; Bilbao J Ind Eng Chem Res; 2022 Jul; 61(29):10365-10376. PubMed ID: 35915619 [TBL] [Abstract][Full Text] [Related]
16. Influence of the ZnCrAl Oxide Composition on the Formation of Hydrocarbons from Syngas. Kull T; Wiesmann T; Wilmsen A; Purcel M; Muhler M; Lohmann H; Zeidler-Fandrich B; Apfel UP ACS Omega; 2022 Nov; 7(47):42994-43005. PubMed ID: 36467945 [TBL] [Abstract][Full Text] [Related]
17. Promoting Syngas to Olefins with Isolated Internal Silanols-Enriched Al-IDM-1 Aluminosilicate Nanosheets. Tuo J; Fan Y; Wang Y; Gong Y; Zhai C; Gong X; Yang T; Xu H; Jiang J; Guan Y; Ma Y; Wu P Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202313785. PubMed ID: 37961041 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in Co Yu F; Lin T; An Y; Gong K; Wang X; Sun Y; Zhong L Chem Commun (Camb); 2022 Aug; 58(70):9712-9727. PubMed ID: 35972448 [TBL] [Abstract][Full Text] [Related]
19. Controlling product selectivity and catalyst lifetime by altering acid strength, cavity size of SAPO, and diffusion rate of methanol in the MTO reaction: DFT and MD calculations. Soheili S; Nakhaei Pour A Phys Chem Chem Phys; 2024 Feb; 26(6):5226-5236. PubMed ID: 38261405 [TBL] [Abstract][Full Text] [Related]
20. High-Quality Gasoline Directly from Syngas by Dual Metal Oxide-Zeolite (OX-ZEO) Catalysis. Li N; Jiao F; Pan X; Chen Y; Feng J; Li G; Bao X Angew Chem Int Ed Engl; 2019 May; 58(22):7400-7404. PubMed ID: 30945413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]