These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 36128458)
21. Synthesis and Applications of SAPO-34 Molecular Sieves. Yu W; Wu X; Cheng B; Tao T; Min X; Mi R; Huang Z; Fang M; Liu Y Chemistry; 2022 Feb; 28(11):e202102787. PubMed ID: 34961998 [TBL] [Abstract][Full Text] [Related]
22. Recent Progress of SAPO-34 Zeolite Membranes for CO Usman M Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629833 [TBL] [Abstract][Full Text] [Related]
23. Design Synthesis of Low-Silica SAPO-34 Nanocrystals by Constructing Isomorphous Core-Shell Structure: An Effective Catalyst for Improving Catalytic Performances in Methanol-to-Olefins Reaction. Wang Q; Dai W; Dai Y; Pan M; Liu Y; Zhang L; Zheng J; Liu X; Li R; Ma L; Wang H; Zong Y ACS Appl Mater Interfaces; 2024 Mar; 16(11):14308-14320. PubMed ID: 38456610 [TBL] [Abstract][Full Text] [Related]
24. Effective synergies in indium oxide loaded with zirconia mixed with silicoaluminophosphate molecular sieve number 34 catalysts for carbon dioxide hydrogenation to lower olefins. Xie T; Ding J; Shang X; Zhang X; Zhong Q J Colloid Interface Sci; 2023 Apr; 635():148-158. PubMed ID: 36584615 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of Hierarchical Porous SAPO-34 and Its Catalytic Activity for 4,6-Dimethyldibenzothiophene. Wang HQ; Cui YQ; Ding YL; Xiang M; Yu P; Li RQ Front Chem; 2022; 10():854664. PubMed ID: 35360531 [TBL] [Abstract][Full Text] [Related]
26. Positive Role of Synthesis Method and Hard Template on the Catalytic Performance of SAPO-34 in Methanol to Olefin Reaction. Rimaz S; Katal R Comb Chem High Throughput Screen; 2021; 24(4):485-489. PubMed ID: 32691709 [TBL] [Abstract][Full Text] [Related]
27. [Optimization of Promoter and Support for Co-based/zeolites Catalysts in Catalytic Reduction of NO Pan H; Jian YF; Chen NN; Liu HX; He C; He YF Huan Jing Ke Xue; 2017 Jul; 38(7):3085-3094. PubMed ID: 29964653 [TBL] [Abstract][Full Text] [Related]
28. NaCa Miao Z; Yang Y; Wei Z; Yang Z; Yu S; Pan S Inorg Chem; 2019 Mar; 58(6):3937-3943. PubMed ID: 30830756 [TBL] [Abstract][Full Text] [Related]
29. Organic-Free Synthesis of Silicoaluminophosphate Molecular Sieves. Park SH; Choi W; Choi HJ; Hong SB Angew Chem Int Ed Engl; 2018 Jul; 57(30):9413-9418. PubMed ID: 29877007 [TBL] [Abstract][Full Text] [Related]
30. Combined Ex and In Situ Measurements Elucidate the Dynamics of Retained Species in ZSM-5 and SAPO-18 Catalysts Used in the Methanol-to-Olefins Reaction. Valecillos J; Ruiz-Martinez J; Aguayo AT; Castaño P Chemistry; 2021 Apr; 27(22):6719-6731. PubMed ID: 33347673 [TBL] [Abstract][Full Text] [Related]
31. High-Yield Synthesis of Hierarchical SAPO-34 by Recrystallization Method for Efficient Methanol-to-Olefin Reactions. Wu Y; Zhang J; Shi Z; Chen C; Yue X; Sun Q Chem Asian J; 2024 Aug; 19(15):e202400436. PubMed ID: 38753576 [TBL] [Abstract][Full Text] [Related]
32. Structures and catalytic performances of Me/SAPO-34 (Me = Mn, Ni, Co) catalysts for low-tem perature SCR of NO Liu X; Sui Z; Chen H; Chen Y; Liu H; Jiang P; Shen Z; Linghu W; Wu X J Environ Sci (China); 2021 Jun; 104():137-149. PubMed ID: 33985717 [TBL] [Abstract][Full Text] [Related]
33. High-throughput synthesis of AlPO and SAPO zeolites by ink jet printing. Chen X; Li Z; Chen Y; Zou S; Xiao L; Fan J Chem Commun (Camb); 2023 Feb; 59(15):2157-2160. PubMed ID: 36727587 [TBL] [Abstract][Full Text] [Related]
34. Controlled synthesis of Cu-based SAPO-18/34 intergrowth zeolites for selective catalytic reduction of NO Zhang S; Ming S; Guo L; Bian C; Meng Y; Liu Q; Dong Y; Bi J; Li D; Wu Q; Qin K; Chen Z; Pang L; Cai W; Li T J Hazard Mater; 2021 Jul; 414():125543. PubMed ID: 33677322 [TBL] [Abstract][Full Text] [Related]
35. Effects of Na Wang C; Wang C; Wang J; Wang J; Shen M; Li W J Environ Sci (China); 2018 Aug; 70():20-28. PubMed ID: 30037406 [TBL] [Abstract][Full Text] [Related]
36. Crystallization of SAPO-11 Molecular Sieves Prepared from Silicoaluminophosphate Gels Using Boehmites with Different Properties. Agliullin MR; Cherepanova SV; Fayzullina ZR; Serebrennikov DV; Khalilov LM; Prosochkina TR; Kutepov BI Gels; 2023 Feb; 9(2):. PubMed ID: 36826293 [TBL] [Abstract][Full Text] [Related]
37. Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine. Liu Y; Qu W; Chang W; Pan S; Tian Z; Meng X; Rigutto M; van der Made A; Zhao L; Zheng X; Xiao FS J Colloid Interface Sci; 2014 Mar; 418():193-9. PubMed ID: 24461835 [TBL] [Abstract][Full Text] [Related]
38. Further Studies on How the Nature of Zeolite Cavities That Are Bounded by Small Pores Influences the Conversion of Methanol to Light Olefins. Kang JH; Walter R; Xie D; Davis T; Chen CY; Davis ME; Zones SI Chemphyschem; 2018 Feb; 19(4):412-419. PubMed ID: 29211929 [TBL] [Abstract][Full Text] [Related]
39. Cost-effective synthesis of hierarchical SAPO-34 zeolites with abundant intracrystalline mesopores and excellent MTO performance. Guo G; Sun Q; Wang N; Bai R; Yu J Chem Commun (Camb); 2018 Apr; 54(30):3697-3700. PubMed ID: 29435549 [TBL] [Abstract][Full Text] [Related]
40. da Silva DA; Greiser S; Contro J; Medeiros VL; Nery JG; Jaeger C Solid State Nucl Magn Reson; 2020 Jun; 107():101661. PubMed ID: 32259768 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]