These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36128544)

  • 1. Highly active and stable surface structure for oxygen evolution reaction originating from balanced dissolution and strong connectivity in BaIrO
    Hirai S; Yagi S; Oh HC; Sato Y; Liu W; Liu EP; Chen WT; Miura A; Nagao M; Ohno T; Matsuda T
    RSC Adv; 2022 Aug; 12(37):24427-24438. PubMed ID: 36128544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the Active-Layer Structures for Acidic Oxygen Evolution from 9R-BaIrO
    Li N; Cai L; Wang C; Lin Y; Huang J; Sheng H; Pan H; Zhang W; Ji Q; Duan H; Hu W; Zhang W; Hu F; Tan H; Sun Z; Song B; Jin S; Yan W
    J Am Chem Soc; 2021 Nov; 143(43):18001-18009. PubMed ID: 34694127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhenium Suppresses Iridium (IV) Oxide Crystallization and Enables Efficient, Stable Electrochemical Water Oxidation.
    Huo W; Zhou X; Jin Y; Xie C; Yang S; Qian J; Cai D; Ge Y; Qu Y; Nie H; Yang Z
    Small; 2023 May; 19(19):e2207847. PubMed ID: 36772894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice Oxygen Exchange in Rutile IrO
    Schweinar K; Gault B; Mouton I; Kasian O
    J Phys Chem Lett; 2020 Jul; 11(13):5008-5014. PubMed ID: 32496784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrous cobalt-iridium oxide two-dimensional nanoframes: insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts.
    Ying Y; Godínez Salomón JF; Lartundo-Rojas L; Moreno A; Meyer R; Damin CA; Rhodes CP
    Nanoscale Adv; 2021 Apr; 3(7):1976-1996. PubMed ID: 36133093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Manipulation of IrO
    Sun W; Zhou Z; Zaman WQ; Cao LM; Yang J
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41855-41862. PubMed ID: 29148711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of a Highly Active Iridium-Based Oxide Oxygen Evolution Reaction Catalyst by Using Metal-Organic Framework Self-Dissolution.
    Sun W; Tian X; Liao J; Deng H; Ma C; Ge C; Yang J; Huang W
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29414-29423. PubMed ID: 32496754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment.
    An L; Wei C; Lu M; Liu H; Chen Y; Scherer GG; Fisher AC; Xi P; Xu ZJ; Yan CH
    Adv Mater; 2021 May; 33(20):e2006328. PubMed ID: 33768614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation.
    Wen Y; Chen P; Wang L; Li S; Wang Z; Abed J; Mao X; Min Y; Dinh CT; Luna P; Huang R; Zhang L; Wang L; Wang L; Nielsen RJ; Li H; Zhuang T; Ke C; Voznyy O; Hu Y; Li Y; Goddard WA; Zhang B; Peng H; Sargent EH
    J Am Chem Soc; 2021 May; 143(17):6482-6490. PubMed ID: 33891414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of IrO
    Zhao W; Xu F; Wang Z; Pan Z; Ye Y; Hu S; Weng B; Zhu R
    Small; 2022 Dec; 18(50):e2205495. PubMed ID: 36310342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OER activity manipulated by IrO
    Sun W; Liu JY; Gong XQ; Zaman WQ; Cao LM; Yang J
    Sci Rep; 2016 Dec; 6():38429. PubMed ID: 27910932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Reconstruction for Forming the [IrO
    Ma CL; Wang ZQ; Sun W; Cao LM; Gong XQ; Yang J
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):29654-29663. PubMed ID: 34148341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic Study of IrO
    Zagalskaya A; Alexandrov V
    J Phys Chem Lett; 2020 Apr; 11(7):2695-2700. PubMed ID: 32188249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER).
    Reier T; Pawolek Z; Cherevko S; Bruns M; Jones T; Teschner D; Selve S; Bergmann A; Nong HN; Schlögl R; Mayrhofer KJ; Strasser P
    J Am Chem Soc; 2015 Oct; 137(40):13031-40. PubMed ID: 26355767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constant Change: Exploring Dynamic Oxygen Evolution Reaction Catalysis and Material Transformations in Strontium Zinc Iridate Perovskite in Acid.
    Edgington J; Schweitzer N; Alayoglu S; Seitz LC
    J Am Chem Soc; 2021 Jul; 143(26):9961-9971. PubMed ID: 34161089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hollandite Structure K(x≈0.25)IrO2 Catalyst with Highly Efficient Oxygen Evolution Reaction.
    Sun W; Song Y; Gong XQ; Cao LM; Yang J
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):820-6. PubMed ID: 26694881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational Design of Rhodium-Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution.
    Guo H; Fang Z; Li H; Fernandez D; Henkelman G; Humphrey SM; Yu G
    ACS Nano; 2019 Nov; 13(11):13225-13234. PubMed ID: 31668069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficiently tuned d-orbital occupation of IrO
    Sun W; Song Y; Gong XQ; Cao LM; Yang J
    Chem Sci; 2015 Aug; 6(8):4993-4999. PubMed ID: 30155005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Dissolution/Precipitation Equilibrium on the Surface of Iridium-Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media.
    Zhang R; Dubouis N; Ben Osman M; Yin W; Sougrati MT; Corte DAD; Giaume D; Grimaud A
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4571-4575. PubMed ID: 30672081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.