These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 36128646)
21. Silencing circ_0001879 inhibits the proliferation and migration of human retinal microvascular endothelial cells under high-glucose conditions via modulating miR-30-3p. Zeng Q; Liu J Gene; 2020 Nov; 760():144992. PubMed ID: 32721474 [TBL] [Abstract][Full Text] [Related]
22. YAP1 is required for the angiogenesis in retinal microvascular endothelial cells via the inhibition of MALAT1-mediated miR-200b-3p in high glucose-induced diabetic retinopathy. Han N; Tian W; Yu N; Yu L J Cell Physiol; 2020 Feb; 235(2):1309-1320. PubMed ID: 31313295 [TBL] [Abstract][Full Text] [Related]
23. [Wogonoside alleviates high glucose-induced dysfunction of retinal microvascular endothelial cells and diabetic retinopathy in rats by up-regulating SIRT1]. Shao X; Yu J; Ni W Nan Fang Yi Ke Da Xue Xue Bao; 2022 Apr; 42(4):463-472. PubMed ID: 35527482 [TBL] [Abstract][Full Text] [Related]
24. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Yan B; Yao J; Liu JY; Li XM; Wang XQ; Li YJ; Tao ZF; Song YC; Chen Q; Jiang Q Circ Res; 2015 Mar; 116(7):1143-56. PubMed ID: 25587098 [TBL] [Abstract][Full Text] [Related]
25. MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation in diabetic retinopathy via miR-34a-5p/XBP1 axis. Cao X; Xue LD; Di Y; Li T; Tian YJ; Song Y Life Sci; 2021 May; 272():119232. PubMed ID: 33600866 [TBL] [Abstract][Full Text] [Related]
26. Anti-angiogenic effect of adiponectin in human primary microvascular and macrovascular endothelial cells. Palanisamy K; Nareshkumar RN; Sivagurunathan S; Raman R; Sulochana KN; Chidambaram S Microvasc Res; 2019 Mar; 122():136-145. PubMed ID: 30144414 [TBL] [Abstract][Full Text] [Related]
27. MiR-203a-3p inhibits retinal angiogenesis and alleviates proliferative diabetic retinopathy in oxygen-induced retinopathy (OIR) rat model via targeting VEGFA and HIF-1α. Han N; Xu H; Yu N; Wu Y; Yu L Clin Exp Pharmacol Physiol; 2020 Jan; 47(1):85-94. PubMed ID: 31408201 [TBL] [Abstract][Full Text] [Related]
30. Protective effect of pentraxin 3 on pathological retinal angiogenesis in an in vitro model of diabetic retinopathy. Jiang Y; Xing X; Niu T; Wang H; Wang C; Shi X; Liu K; Su L Arch Biochem Biophys; 2022 Aug; 725():109283. PubMed ID: 35577071 [TBL] [Abstract][Full Text] [Related]
31. MiR-221-3p regulates the microvascular dysfunction in diabetic retinopathy by targeting TIMP3. Wang C; Lin Y; Fu Y; Zhang D; Xin Y Pflugers Arch; 2020 Nov; 472(11):1607-1618. PubMed ID: 32648125 [TBL] [Abstract][Full Text] [Related]
32. Role of FAM18B in diabetic retinopathy. Wang AL; Rao VR; Chen JJ; Lussier YA; Rehman J; Huang Y; Jager RD; Grassi MA Mol Vis; 2014; 20():1146-59. PubMed ID: 25221423 [TBL] [Abstract][Full Text] [Related]
33. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction. Qiu GZ; Tian W; Fu HT; Li CP; Liu B Biochem Biophys Res Commun; 2016 Feb; 471(1):135-41. PubMed ID: 26845358 [TBL] [Abstract][Full Text] [Related]
34. A central role for inflammation in the pathogenesis of diabetic retinopathy. Joussen AM; Poulaki V; Le ML; Koizumi K; Esser C; Janicki H; Schraermeyer U; Kociok N; Fauser S; Kirchhof B; Kern TS; Adamis AP FASEB J; 2004 Sep; 18(12):1450-2. PubMed ID: 15231732 [TBL] [Abstract][Full Text] [Related]
35. Thioredoxin-interacting protein deficiency ameliorates diabetic retinal angiogenesis. Duan J; Du C; Shi Y; Liu D; Ma J Int J Biochem Cell Biol; 2018 Jan; 94():61-70. PubMed ID: 29203232 [TBL] [Abstract][Full Text] [Related]
36. Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. Behl Y; Krothapalli P; Desta T; DiPiazza A; Roy S; Graves DT Am J Pathol; 2008 May; 172(5):1411-8. PubMed ID: 18403591 [TBL] [Abstract][Full Text] [Related]
37. Silencing Of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction. Liu C; Yao MD; Li CP; Shan K; Yang H; Wang JJ; Liu B; Li XM; Yao J; Jiang Q; Yan B Theranostics; 2017; 7(11):2863-2877. PubMed ID: 28824721 [TBL] [Abstract][Full Text] [Related]
38. The Suppression of Kallistatin on High-Glucose-Induced Proliferation of Retinal Endothelial Cells in Diabetic Retinopathy. Xing Q; Zhang G; Kang L; Wu J; Chen H; Liu G; Zhu R; Guan H; Lu P Ophthalmic Res; 2017; 57(3):141-149. PubMed ID: 27537690 [TBL] [Abstract][Full Text] [Related]
39. tiRNA-Val promotes angiogenesis via Sirt1-Hif-1α axis in mice with diabetic retinopathy. Xu Y; Zou H; Ding Q; Zou Y; Tang C; Lu Y; Xu X Biol Res; 2022 Mar; 55(1):14. PubMed ID: 35346383 [TBL] [Abstract][Full Text] [Related]
40. BTBR ob/ob mouse model of type 2 diabetes exhibits early loss of retinal function and retinal inflammation followed by late vascular changes. Lee VK; Hosking BM; Holeniewska J; Kubala EC; Lundh von Leithner P; Gardner PJ; Foxton RH; Shima DT Diabetologia; 2018 Nov; 61(11):2422-2432. PubMed ID: 30094465 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]