BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 36128910)

  • 1. Growth, replication and division enable evolution of coacervate protocells.
    Slootbeek AD; van Haren MHI; Smokers IBA; Spruijt E
    Chem Commun (Camb); 2022 Oct; 58(80):11183-11200. PubMed ID: 36128910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective amide bond formation in redox-active coacervate protocells.
    Wang J; Abbas M; Wang J; Spruijt E
    Nat Commun; 2023 Dec; 14(1):8492. PubMed ID: 38129391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications.
    Wang Z; Zhang M; Zhou Y; Zhang Y; Wang K; Liu J
    Small Methods; 2023 Dec; 7(12):e2300042. PubMed ID: 36908048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental systems to explore life origin: perspectives for understanding primitive mechanisms of cell division.
    Adamala K; Luisi PL
    Results Probl Cell Differ; 2011; 53():1-9. PubMed ID: 21630138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A recursive vesicle-based model protocell with a primitive model cell cycle.
    Kurihara K; Okura Y; Matsuo M; Toyota T; Suzuki K; Sugawara T
    Nat Commun; 2015 Sep; 6():8352. PubMed ID: 26418735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Transformation from Membrane-less Coacervates to Membranized Coacervates and Giant Vesicles: toward Multicompartmental Protocells with Complex (Membrane) Architectures.
    Appelhans D; Zhou Y; Zhang K; Moreno S; Temme A; Voit B
    Angew Chem Int Ed Engl; 2024 Jun; ():e202407472. PubMed ID: 38847278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty Acid-Based Coacervates as a Membrane-free Protocell Model.
    Zhou L; Koh JJ; Wu J; Fan X; Chen H; Hou X; Jiang L; Lu X; Li Z; He C
    Bioconjug Chem; 2022 Mar; 33(3):444-451. PubMed ID: 35138820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-based coacervates as biomimetic protocells.
    Abbas M; Lipiński WP; Wang J; Spruijt E
    Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membranized Coacervate Microdroplets: from Versatile Protocell Models to Cytomimetic Materials.
    Gao N; Mann S
    Acc Chem Res; 2023 Feb; 56(3):297-307. PubMed ID: 36625520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclophospholipids Enable a Protocellular Life Cycle.
    Toparlak ÖD; Sebastianelli L; Egas Ortuno V; Karki M; Xing Y; Szostak JW; Krishnamurthy R; Mansy SS
    ACS Nano; 2023 Dec; 17(23):23772-23783. PubMed ID: 38038709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant Cell-Inspired Membranization of Coacervate Protocells with a Structured Polysaccharide Layer.
    Ji Y; Lin Y; Qiao Y
    J Am Chem Soc; 2023 Jun; 145(23):12576-12585. PubMed ID: 37267599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
    Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E
    Acc Chem Res; 2024 Jul; ():. PubMed ID: 38968602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The origins of cellular life.
    Schrum JP; Zhu TF; Szostak JW
    Cold Spring Harb Perspect Biol; 2010 Sep; 2(9):a002212. PubMed ID: 20484387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical Characterization of Polymer-Stabilized Coacervate Protocells.
    Yewdall NA; Buddingh BC; Altenburg WJ; Timmermans SBPE; Vervoort DFM; Abdelmohsen LKEA; Mason AF; van Hest JCM
    Chembiochem; 2019 Oct; 20(20):2643-2652. PubMed ID: 31012235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protocell with fusion and division.
    Xu BY; Xu J; Yomo T
    Biochem Soc Trans; 2019 Dec; 47(6):1909-1919. PubMed ID: 31819942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells.
    Ianeselli A; Tetiker D; Stein J; Kühnlein A; Mast CB; Braun D; Dora Tang TY
    Nat Chem; 2022 Jan; 14(1):32-39. PubMed ID: 34873298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous Membranization in a Silk-Based Coacervate Protocell Model.
    Yin Z; Tian L; Patil AJ; Li M; Mann S
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202202302. PubMed ID: 35176203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling.
    Fraccia TP; Martin N
    Nat Commun; 2023 May; 14(1):2606. PubMed ID: 37160869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocells: Milestones and Recent Advances.
    Gözen I; Köksal ES; Põldsalu I; Xue L; Spustova K; Pedrueza-Villalmanzo E; Ryskulov R; Meng F; Jesorka A
    Small; 2022 May; 18(18):e2106624. PubMed ID: 35322554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.