BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36128946)

  • 1. Predicting Substance Use Treatment Failure with Transfer Learning.
    Bailey JD; DeFulio A
    Subst Use Misuse; 2022; 57(13):1982-1987. PubMed ID: 36128946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DEGnext: classification of differentially expressed genes from RNA-seq data using a convolutional neural network with transfer learning.
    Kakati T; Bhattacharyya DK; Kalita JK; Norden-Krichmar TM
    BMC Bioinformatics; 2022 Jan; 23(1):17. PubMed ID: 34991439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AutoTune: Automatically Tuning Convolutional Neural Networks for Improved Transfer Learning.
    Basha SHS; Vinakota SK; Pulabaigari V; Mukherjee S; Dubey SR
    Neural Netw; 2021 Jan; 133():112-122. PubMed ID: 33181405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks.
    Vakli P; Deák-Meszlényi RJ; Hermann P; Vidnyánszky Z
    Gigascience; 2018 Dec; 7(12):. PubMed ID: 30395218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-transfer learning for task invariance in convolutional neural networks for speech processing.
    Guizzo E; Weyde T; Tarroni G
    Neural Netw; 2021 Oct; 142():238-251. PubMed ID: 34034071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.
    Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE
    Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing optimal methods for transferring machine learning models to low-volume and imbalanced clinical datasets: experiences from predicting outcomes of Danish trauma patients.
    Millarch AS; Bonde A; Bonde M; Klein KV; Folke F; Rudolph SS; Sillesen M
    Front Digit Health; 2023; 5():1249258. PubMed ID: 38026835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring transfer learning for gastrointestinal bleeding detection on small-size imbalanced endoscopy images.
    Xiuli Li ; Hao Zhang ; Xiaolu Zhang ; Hao Liu ; Guotong Xie
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1994-1997. PubMed ID: 29060286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-Learning prediction of comorbid substance use disorders in ADHD youth using Swedish registry data.
    Zhang-James Y; Chen Q; Kuja-Halkola R; Lichtenstein P; Larsson H; Faraone SV
    J Child Psychol Psychiatry; 2020 Dec; 61(12):1370-1379. PubMed ID: 32237241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer learning for drug-target interaction prediction.
    Dalkıran A; Atakan A; Rifaioğlu AS; Martin MJ; Atalay RÇ; Acar AC; Doğan T; Atalay V
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i103-i110. PubMed ID: 37387156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crackle Detection In Lung Sounds Using Transfer Learning And Multi-Input Convolutional Neural Networks.
    Nguyen T; Pernkopf F
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():80-83. PubMed ID: 34891244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TEM virus images: Benchmark dataset and deep learning classification.
    Matuszewski DJ; Sintorn IM
    Comput Methods Programs Biomed; 2021 Sep; 209():106318. PubMed ID: 34375851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Healthcare data integration using machine learning: A case study evaluation with health information-seeking behavior databases.
    Mirzaei A; Aslani P; Schneider CR
    Res Social Adm Pharm; 2022 Dec; 18(12):4144-4149. PubMed ID: 35965198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a machine learning framework to predict substance use disorder treatment success.
    Acion L; Kelmansky D; van der Laan M; Sahker E; Jones D; Arndt S
    PLoS One; 2017; 12(4):e0175383. PubMed ID: 28394905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-based outcome prediction and novel hypotheses generation for substance use disorder treatment.
    Nasir M; Summerfield NS; Oztekin A; Knight M; Ackerson LK; Carreiro S
    J Am Med Inform Assoc; 2021 Jun; 28(6):1216-1224. PubMed ID: 33570148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.
    McAllister P; Zheng H; Bond R; Moorhead A
    Comput Biol Med; 2018 Apr; 95():217-233. PubMed ID: 29549733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention time prediction in hydrophilic interaction liquid chromatography with graph neural network and transfer learning.
    Yang Q; Ji H; Fan X; Zhang Z; Lu H
    J Chromatogr A; 2021 Oct; 1656():462536. PubMed ID: 34563892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.