BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36128951)

  • 1. Unprecedented enhancement and preservation of the peroxidase activity of cytochrome-
    Kumar S; Sindhu A; Venkatesu P
    Phys Chem Chem Phys; 2022 Oct; 24(38):23460-23471. PubMed ID: 36128951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Ionic Liquids on the Stabilization Process of Gold Nanoparticles.
    Khavani M; Mehranfar A; Mofrad MRK
    J Phys Chem B; 2022 Nov; 126(46):9617-9631. PubMed ID: 36367820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid-enhanced conformation changes of yeast cytochrome c coated onto gold nanoparticles, a FT-IR spectroscopic analysis.
    Dong A; Brown C; Bai S; Dong J
    Int J Biol Macromol; 2018 Jun; 112():591-597. PubMed ID: 29408679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biocompatible validity of amino acid ionic liquid mediated gold nanoparticles for enhanced activity and structural stability of papain.
    Kumar S; Venkatesu P
    Dalton Trans; 2021 Aug; 50(30):10455-10470. PubMed ID: 34259272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical performance of gold nanoparticle-cytochrome c hybrid interface for H2O2 detection.
    Yagati AK; Lee T; Min J; Choi JW
    Colloids Surf B Biointerfaces; 2012 Apr; 92():161-7. PubMed ID: 22197224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Choline Hydroxide-Supported Magnetic Nanoparticles on Peroxidase Activity and Conformational Stability of Cytochrome c.
    Chahar D; Jha I; Arumugam J; Venkatesu P
    ACS Appl Bio Mater; 2024 Feb; 7(2):1135-1145. PubMed ID: 38262058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Favorable Biological Performance Regarding the Interaction between Gold Nanoparticles and Mesenchymal Stem Cells.
    Lin RH; Lee HT; Yeh CA; Yang YC; Shen CC; Chang KB; Liu BS; Hsieh HH; Wang HD; Hung HS
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microneedle-based transdermal electrochemical biosensors based on Prussian blue-gold nanohybrid modified screen-printed electrodes.
    Pandey PC; Pandey G; Narayan RJ
    J Biomed Mater Res B Appl Biomater; 2021 Jan; 109(1):33-49. PubMed ID: 32677314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Surface Quantification of Multifunctionalized Gold Nanoparticles Using UV-Visible Absorption Spectroscopy Deconvolution.
    Potts JC; Jain A; Amabilino DB; Rawson FJ; Pérez-García L
    Anal Chem; 2023 Sep; 95(35):12998-13002. PubMed ID: 37621249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-gold nanoparticle interactions and their possible impact on biomedical applications.
    Liu J; Peng Q
    Acta Biomater; 2017 Jun; 55():13-27. PubMed ID: 28377307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anion and cation effects on the size control of Au nanoparticles prepared by sputter deposition in imidazolium-based ionic liquids.
    Hatakeyama Y; Judai K; Onishi K; Takahashi S; Kimura S; Nishikawa K
    Phys Chem Chem Phys; 2016 Jan; 18(4):2339-49. PubMed ID: 26344691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles.
    Jafari Azad V; Kasravi S; Alizadeh Zeinabad H; Memar Bashi Aval M; Saboury AA; Rahimi A; Falahati M
    J Biomol Struct Dyn; 2017 Sep; 35(12):2565-2577. PubMed ID: 27632558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implication of Threonine-Based Ionic Liquids on the Structural Stability, Binding and Activity of Cytochrome c.
    Kumar Sahoo D; Devi Tulsiyan K; Jena S; Biswal HS
    Chemphyschem; 2020 Dec; 21(23):2525-2535. PubMed ID: 33022820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Ionic Liquid-Assisted Refolding of Denatured Cytochrome c: A Study of Preferential Interactions toward Renaturation.
    Singh UK; Patel R
    Mol Pharm; 2018 Jul; 15(7):2684-2697. PubMed ID: 29767978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon switching of gold nanoparticles through thermo-responsive terminal breathing of surface-grafted DNA in hydrated ionic liquids.
    Cheng L; Wang L; He Z; Sun X; Li Y; Wang G; Tian Y; Takarada T; Maeda M; Liang X
    Analyst; 2021 Jun; 146(13):4154-4160. PubMed ID: 33977966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Striking improvement in peroxidase activity of cytochrome c by modulating hydrophobicity of surface-functionalized gold nanoparticles within cationic reverse micelles.
    Maiti S; Das K; Dutta S; Das PK
    Chemistry; 2012 Nov; 18(47):15021-30. PubMed ID: 23018861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of biologically stable gold nanoparticles using imidazolium-based amino acid ionic liquids.
    Safavi A; Zeinali S; Yazdani M
    Amino Acids; 2012 Sep; 43(3):1323-30. PubMed ID: 22209864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold Nanoparticle-Redox Ionic Liquid based Nanoconjugated Matrix as a Novel Multifunctional Biosensing Interface.
    Theyagarajan K; Yadav S; Satija J; Thenmozhi K; Senthilkumar S
    ACS Biomater Sci Eng; 2020 Nov; 6(11):6076-6085. PubMed ID: 33449637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing protein nano-construct in ionic liquid: a boost in efficacy of cytochrome
    Thayallath SK; Shet SM; Bisht M; Bharadwaj P; Pereira MM; Franklin G; Nataraj SK; Mondal D
    Chem Commun (Camb); 2023 May; 59(39):5894-5897. PubMed ID: 37097129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms for the induction of peroxidase activity of the cytochrome c-cardiolipin complex.
    Abe M; Niibayashi R; Koubori S; Moriyama I; Miyoshi H
    Biochemistry; 2011 Oct; 50(39):8383-91. PubMed ID: 21877718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.