These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 36128978)
41. Photothermal Therapy Nanomaterials Boosting Transformation of Fe(III) into Fe(II) in Tumor Cells for Highly Improving Chemodynamic Therapy. Nie X; Xia L; Wang HL; Chen G; Wu B; Zeng TY; Hong CY; Wang LH; You YZ ACS Appl Mater Interfaces; 2019 Sep; 11(35):31735-31742. PubMed ID: 31393101 [TBL] [Abstract][Full Text] [Related]
42. Intelligent responsive copper-diethyldithiocarbamate-based multifunctional nanomedicine for photothermal-augmented synergistic cancer therapy. Meng X; Wu J; Hu Z; Zheng X J Mater Chem B; 2024 Jan; 12(5):1285-1295. PubMed ID: 38189142 [TBL] [Abstract][Full Text] [Related]
43. Fenton-like reaction, glutathione reduction, and photothermal ablation-built-in hydrogels crosslinked by cupric sulfate for loco-regional cancer therapy. Kim S; Seo JH; Jeong DI; Yang M; Lee SY; Lee J; Cho HJ Biomater Sci; 2021 Feb; 9(3):847-860. PubMed ID: 33232388 [TBL] [Abstract][Full Text] [Related]
44. Self-Assembled Copper-Amino Acid Nanoparticles for in Situ Glutathione "AND" H Ma B; Wang S; Liu F; Zhang S; Duan J; Li Z; Kong Y; Sang Y; Liu H; Bu W; Li L J Am Chem Soc; 2019 Jan; 141(2):849-857. PubMed ID: 30541274 [TBL] [Abstract][Full Text] [Related]
45. A spark to the powder keg: Microneedle-based antitumor nanomedicine targeting reactive oxygen species accumulation for chemodynamic/photothermal/chemotherapy. Liao K; Niu B; Dong H; He L; Zhou Y; Sun Y; Yang D; Wu C; Pan X; Quan G J Colloid Interface Sci; 2022 Dec; 628(Pt B):189-203. PubMed ID: 35994900 [TBL] [Abstract][Full Text] [Related]
46. Dual-Level Reactive Oxygen Species Amplifier for Enhanced Photothermal-Chemodynamic Therapy. Sun X; Zhang Q; Bao Y; Ye Q; Han J; Guo R Langmuir; 2024 Sep; 40(36):19125-19133. PubMed ID: 39190551 [TBL] [Abstract][Full Text] [Related]
47. All-in-one CoFe Chen N; Wang Y; Zeng Y; Li Y; Pan Z; Li H; Chen J; Chen Z; Yuan J; Yan W; Lu YJ; Liu X; He Y; Zhang K Biomater Sci; 2023 Jan; 11(3):828-839. PubMed ID: 36453535 [TBL] [Abstract][Full Text] [Related]
48. Fenton-like nanoparticles capable of H He Y; Tian X; Zhang M; Xu H; Gong X; Yang B; Zhou F Biomater Sci; 2024 Oct; 12(21):5534-5546. PubMed ID: 39267609 [TBL] [Abstract][Full Text] [Related]
49. Degradable iron-rich mesoporous dopamine as a dual-glutathione depletion nanoplatform for photothermal-enhanced ferroptosis and chemodynamic therapy. Cheng H; He Y; Lu J; Yan Z; Song L; Mao Y; Di D; Gao Y; Zhao Q; Wang S J Colloid Interface Sci; 2023 Jun; 639():249-262. PubMed ID: 36805750 [TBL] [Abstract][Full Text] [Related]
50. Ultrasmall Cu Hu R; Fang Y; Huo M; Yao H; Wang C; Chen Y; Wu R Biomaterials; 2019 Jun; 206():101-114. PubMed ID: 30927714 [TBL] [Abstract][Full Text] [Related]
51. Biodegradable Amorphous Copper Iron Tellurite Promoting the Utilization of Fenton-Like Ions for Efficient Synergistic Cancer Theranostics. Liu H; Jiang R; Lu Y; Shan B; Wen Y; Li M ACS Appl Mater Interfaces; 2022 Jun; 14(25):28537-28547. PubMed ID: 35704874 [TBL] [Abstract][Full Text] [Related]
52. An NIR-II Responsive Nanoplatform for Cancer Photothermal and Oxidative Stress Therapy. Huang B; Huang Y; Han H; Ge Q; Yang D; Hu Y; Ding M; Su Y; He Y; Shao J; Chu J Front Bioeng Biotechnol; 2021; 9():751757. PubMed ID: 34722478 [TBL] [Abstract][Full Text] [Related]
53. Acidic biofilm microenvironment-responsive ROS generation via a protein nanoassembly with hypoxia-relieving and GSH-depleting capabilities for efficient elimination of biofilm bacteria. Li J; Sun M; Tang X; Liu Y; Ou C; Luo Y; Wang L; Hai L; Deng L; He D Acta Biomater; 2024 Sep; 186():439-453. PubMed ID: 39097126 [TBL] [Abstract][Full Text] [Related]
54. NIR-II-driven and glutathione depletion-enhanced hypoxia-irrelevant free radical nanogenerator for combined cancer therapy. Zhang L; Fan Y; Yang Z; Yang M; Wong CY J Nanobiotechnology; 2021 Sep; 19(1):265. PubMed ID: 34488803 [TBL] [Abstract][Full Text] [Related]
55. Redox Homeostasis Disruptors Based on Metal-Phenolic Network Nanoparticles for Chemo/Chemodynamic Synergistic Tumor Therapy through Activating Apoptosis and Cuproptosis. Zhao F; Yu H; Liang L; Wang C; Shi D; Zhang X; Ying Y; Cai W; Li W; Li J; Zheng J; Qiao L; Che S; Yu J Adv Healthc Mater; 2023 Nov; 12(29):e2301346. PubMed ID: 37369362 [TBL] [Abstract][Full Text] [Related]
56. Clearable Theranostic Platform with a pH-Independent Chemodynamic Therapy Enhancement Strategy for Synergetic Photothermal Tumor Therapy. Chen Q; Luo Y; Du W; Liu Z; Zhang S; Yang J; Yao H; Liu T; Ma M; Chen H ACS Appl Mater Interfaces; 2019 May; 11(20):18133-18144. PubMed ID: 31046230 [TBL] [Abstract][Full Text] [Related]
57. 3-Bromopyruvate-Loaded Ti Wang Z; Li H; She W; Zhang X; Liu Y; Liu Y; Jiang P Anal Chem; 2023 Jan; 95(2):1710-1720. PubMed ID: 36599415 [TBL] [Abstract][Full Text] [Related]
58. Tumor Microenvironment-Modulated Nanozymes for NIR-II-Triggered Hyperthermia-Enhanced Photo-Nanocatalytic Therapy via Disrupting ROS Homeostasis. Zhu L; Dai Y; Gao L; Zhao Q Int J Nanomedicine; 2021; 16():4559-4577. PubMed ID: 34267513 [TBL] [Abstract][Full Text] [Related]
59. Redox-active polyphenol nanoparticles deprive endogenous glutathione of electrons for ROS generation and tumor chemodynamic therapy. Wang Y; Wang J; Jiao Y; Chen K; Chen T; Wu X; Jiang X; Bu W; Liu C; Qu X Acta Biomater; 2023 Dec; 172():423-440. PubMed ID: 37778486 [TBL] [Abstract][Full Text] [Related]
60. Multifunctional Magnetic Copper Ferrite Nanoparticles as Fenton-like Reaction and Near-Infrared Photothermal Agents for Synergetic Antibacterial Therapy. Liu Y; Guo Z; Li F; Xiao Y; Zhang Y; Bu T; Jia P; Zhe T; Wang L ACS Appl Mater Interfaces; 2019 Sep; 11(35):31649-31660. PubMed ID: 31407880 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]