BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36129102)

  • 1. Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium.
    Debata S; Kherani NA; Panda SK; Singh DP
    J Mater Chem B; 2022 Oct; 10(40):8235-8243. PubMed ID: 36129102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-Controlled Self-Assembly of Light-Powered Microrobots into Ordered Microchains for Cells Transport and Water Remediation.
    Peng X; Urso M; Ussia M; Pumera M
    ACS Nano; 2022 May; 16(5):7615-7625. PubMed ID: 35451832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-inspired magnetic swimming microrobots for biomedical applications.
    Peyer KE; Zhang L; Nelson BJ
    Nanoscale; 2013 Feb; 5(4):1259-72. PubMed ID: 23165991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-level magnetic microrobot delivery strategy within a hierarchical vascularized organ-on-a-chip.
    Lu K; Zhou C; Li Z; Liu Y; Wang F; Xuan L; Wang X
    Lab Chip; 2024 Jan; 24(3):446-459. PubMed ID: 38095230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Robot Platform for Highly Efficient Pollutant Purification.
    Wang H; Yu S; Liao J; Qing X; Sun D; Ji F; Song W; Wang L; Li T
    Front Bioeng Biotechnol; 2022; 10():903219. PubMed ID: 35782505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation.
    Kim S; Qiu F; Kim S; Ghanbari A; Moon C; Zhang L; Nelson BJ; Choi H
    Adv Mater; 2013 Nov; 25(41):5863-8. PubMed ID: 23864519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Microrobot Swarms with Polymeric Hands Catching Bacteria and Microplastics in Water.
    Ussia M; Urso M; Oral CM; Peng X; Pumera M
    ACS Nano; 2024 May; 18(20):13171-13183. PubMed ID: 38717036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.
    Li H; Zhang J; Zhang N; Kershaw J; Wang L
    J Microencapsul; 2016 Dec; 33(8):712-717. PubMed ID: 27632892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip.
    Ma Q; Chen C; Wei S; Chen C; Wu LF; Song T
    Biomicrofluidics; 2012 Jun; 6(2):24107-2410712. PubMed ID: 22655018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Cell-Carrying Magnetic Microrobots with Bioactive Nanostructured Titanate Surface for Enhanced Cell Adhesion.
    Li J; Fan L; Li Y; Wei T; Wang C; Li F; Tian H; Sun D
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time 3D optoacoustic tracking of cell-sized magnetic microrobots circulating in the mouse brain vasculature.
    Wrede P; Degtyaruk O; Kalva SK; Deán-Ben XL; Bozuyuk U; Aghakhani A; Akolpoglu B; Sitti M; Razansky D
    Sci Adv; 2022 May; 8(19):eabm9132. PubMed ID: 35544570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification.
    Urso M; Ussia M; Peng X; Oral CM; Pumera M
    Nat Commun; 2023 Nov; 14(1):6969. PubMed ID: 37914692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Wavelength Light-Responsive Metal-Phenolic Network-Based Microrobots for Reactive Species Scavenging.
    Guo Z; Liu T; Gao W; Iffelsberger C; Kong B; Pumera M
    Adv Mater; 2023 Mar; 35(10):e2210994. PubMed ID: 36591619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced directionality of bio-hybrid mobile microrobots using non-spherical body geometries.
    Sahari A; Headen D; Behkam B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6580-2. PubMed ID: 23367437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a microrobot system using magnetotactic bacteria for the separation of Staphylococcus aureus.
    Chen CY; Chen CF; Yi Y; Chen LJ; Wu LF; Song T
    Biomed Microdevices; 2014 Oct; 16(5):761-70. PubMed ID: 24951158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective coatings for intraocular wirelessly controlled microrobots for implantation: Corrosion, cell culture, and in vivo animal tests.
    Pokki J; Ergeneman O; Chatzipirpiridis G; Lühmann T; Sort J; Pellicer E; Pot SA; Spiess BM; Pané S; Nelson BJ
    J Biomed Mater Res B Appl Biomater; 2017 May; 105(4):836-845. PubMed ID: 26804771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ integrated microrobots driven by artificial muscles built from biomolecular motors.
    Wang Y; Nitta T; Hiratsuka Y; Morishima K
    Sci Robot; 2022 Aug; 7(69):eaba8212. PubMed ID: 36001686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative Micromanipulation Using the Independent Actuation of Fifty Microrobots in Parallel.
    Rahman MA; Cheng J; Wang Z; Ohta AT
    Sci Rep; 2017 Jun; 7(1):3278. PubMed ID: 28607359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery.
    Akolpoglu MB; Alapan Y; Dogan NO; Baltaci SF; Yasa O; Aybar Tural G; Sitti M
    Sci Adv; 2022 Jul; 8(28):eabo6163. PubMed ID: 35857516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohybrid magnetic microrobots: An intriguing and promising platform in biomedicine.
    Zhu S; Cheng Y; Wang J; Liu G; Luo T; Li X; Yang S; Yang R
    Acta Biomater; 2023 Oct; 169():88-106. PubMed ID: 37572981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.