These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 36129210)
1. On the origin of photodynamic activity of hypericin and its iodine-containing derivatives. De Simone BC; Mazzone G; Toscano M; Russo N J Comput Chem; 2022 Nov; 43(30):2037-2042. PubMed ID: 36129210 [TBL] [Abstract][Full Text] [Related]
2. Deciphering the photosensitization mechanisms of hypericin towards biological membranes. Gattuso H; Marazzi M; Dehez F; Monari A Phys Chem Chem Phys; 2017 Aug; 19(34):23187-23193. PubMed ID: 28820528 [TBL] [Abstract][Full Text] [Related]
3. Can Expanded Bacteriochlorins Act as Photosensitizers in Photodynamic Therapy? Good News from Density Functional Theory Computations. Mazzone G; Alberto ME; De Simone BC; Marino T; Russo N Molecules; 2016 Feb; 21(3):288. PubMed ID: 26938516 [TBL] [Abstract][Full Text] [Related]
4. Liposome binding constants and singlet oxygen quantum yields of hypericin, tetrahydroxy helianthrone and their derivatives: studies in organic solutions and in liposomes. Roslaniec M; Weitman H; Freeman D; Mazur Y; Ehrenberg B J Photochem Photobiol B; 2000 Sep; 57(2-3):149-58. PubMed ID: 11154081 [TBL] [Abstract][Full Text] [Related]
5. Effect of the iodine atom position on the phosphorescence of BODIPY derivatives: a combined computational and experimental study. Bassan E; Dai Y; Fazzi D; Gualandi A; Cozzi PG; Negri F; Ceroni P Photochem Photobiol Sci; 2022 May; 21(5):777-786. PubMed ID: 35023042 [TBL] [Abstract][Full Text] [Related]
6. Rational Design of Modified Oxobacteriochlorins as Potential Photodynamic Therapy Photosensitizers. Alberto ME; De Simone BC; Sicilia E; Toscano M; Russo N Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31022831 [TBL] [Abstract][Full Text] [Related]
7. Photophysical properties of heavy atom containing tetrasulfonyl phthalocyanines as possible photosensitizers in photodynamic therapy. De Simone BC; Alberto ME; Russo N; Toscano M J Comput Chem; 2021 Sep; 42(25):1803-1808. PubMed ID: 34236090 [TBL] [Abstract][Full Text] [Related]
8. The heavy atom effect on Zn(ii) phthalocyanine derivatives: a theoretical exploration of the photophysical properties. Alberto ME; De Simone BC; Mazzone G; Sicilia E; Russo N Phys Chem Chem Phys; 2015 Sep; 17(36):23595-601. PubMed ID: 26299352 [TBL] [Abstract][Full Text] [Related]
9. Iodine substituted phosphorus corrole complexes as possible photosensitizers in photodynamic therapy: Insights from theory. Alberto ME; De Simone BC; Liuzzi S; Marino T; Russo N; Toscano M J Comput Chem; 2020 May; 41(14):1395-1401. PubMed ID: 32104925 [TBL] [Abstract][Full Text] [Related]
10. Bisanthracene bis(dicarboxylic imide)s as potential photosensitizers in photodynamic therapy: a theoretical investigation. Alberto ME; Iuga C; Quartarolo AD; Russo N J Chem Inf Model; 2013 Sep; 53(9):2334-40. PubMed ID: 23899186 [TBL] [Abstract][Full Text] [Related]
11. Halogenated BODIPY photosensitizers: Photophysical processes for generation of excited triplet state, excited singlet state and singlet oxygen. Hu W; Zhang R; Zhang XF; Liu J; Luo L Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120965. PubMed ID: 35131619 [TBL] [Abstract][Full Text] [Related]
12. BODIPY for photodynamic therapy applications: computational study of the effect of bromine substitution on Ponte F; Mazzone G; Russo N; Sicilia E J Mol Model; 2018 Jun; 24(7):183. PubMed ID: 29959590 [TBL] [Abstract][Full Text] [Related]
13. Electronic spectra and intersystem spin-orbit coupling in 1,2- and 1,3-squaraines. Alberto ME; Mazzone G; Quartarolo AD; Sousa FF; Sicilia E; Russo N J Comput Chem; 2014 Nov; 35(29):2107-13. PubMed ID: 25178476 [TBL] [Abstract][Full Text] [Related]
15. A TDDFT investigation of bay substituted perylenediimides: absorption and intersystem crossing. Quartarolo AD; Chiodo SG; Russo N J Comput Chem; 2012 Apr; 33(11):1091-100. PubMed ID: 22371335 [TBL] [Abstract][Full Text] [Related]
16. In vitro study of the photocytotoxicity of bathochromically-shifted hypericin derivatives. Roelants M; Lackner B; Waser M; Falk H; Agostinis P; Van Poppel H; de Witte PA Photochem Photobiol Sci; 2009 Jun; 8(6):822-9. PubMed ID: 19492110 [TBL] [Abstract][Full Text] [Related]
17. Spin-Orbit Charge-Transfer Intersystem Crossing (ISC) in Compact Electron Donor-Acceptor Dyads: ISC Mechanism and Application as Novel and Potent Photodynamic Therapy Reagents. Wang Z; Ivanov M; Gao Y; Bussotti L; Foggi P; Zhang H; Russo N; Dick B; Zhao J; Di Donato M; Mazzone G; Luo L; Fedin M Chemistry; 2020 Jan; 26(5):1091-1102. PubMed ID: 31743947 [TBL] [Abstract][Full Text] [Related]
18. Excitation energies, singlet-triplet energy gaps, spin-orbit matrix elements and heavy atom effects in BOIMPYs as possible photosensitizers for photodynamic therapy: a computational investigation. De Simone BC; Mazzone G; Russo N; Sicilia E; Toscano M Phys Chem Chem Phys; 2018 Jan; 20(4):2656-2661. PubMed ID: 29319078 [TBL] [Abstract][Full Text] [Related]
19. Hypericin and its radio iodinated derivatives - A novel combined approach for the treatment of pediatric alveolar rhabdomyosarcoma cells in vitro. Ocker L; Adamus A; Hempfling L; Wagner B; Vahdad R; Verburg FA; Luster M; Schurrat T; Bier D; Frank M; Lisec J; Engel N; Seitz G Photodiagnosis Photodyn Ther; 2020 Mar; 29():101588. PubMed ID: 31704507 [TBL] [Abstract][Full Text] [Related]
20. Theoretical study of C da Rocha VN; Köhler MH; Nagata K; Piquini PC Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 293():122500. PubMed ID: 36827812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]