These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 36129222)
1. Detectability of Small Low-Attenuation Lesions With Deep Learning CT Image Reconstruction: A 24-Reader Phantom Study. Toia GV; Zamora DA; Singleton M; Liu A; Tan E; Leng S; Shuman WP; Kanal KM; Mileto A AJR Am J Roentgenol; 2023 Feb; 220(2):283-295. PubMed ID: 36129222 [No Abstract] [Full Text] [Related]
2. Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely? Lyu P; Liu N; Harrawood B; Solomon J; Wang H; Chen Y; Rigiroli F; Ding Y; Schwartz FR; Jiang H; Lowry C; Wang L; Samei E; Gao J; Marin D Eur Radiol; 2023 Mar; 33(3):1629-1640. PubMed ID: 36323984 [TBL] [Abstract][Full Text] [Related]
3. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Greffier J; Hamard A; Pereira F; Barrau C; Pasquier H; Beregi JP; Frandon J Eur Radiol; 2020 Jul; 30(7):3951-3959. PubMed ID: 32100091 [TBL] [Abstract][Full Text] [Related]
4. Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: A phantom study. Racine D; Becce F; Viry A; Monnin P; Thomsen B; Verdun FR; Rotzinger DC Phys Med; 2020 Aug; 76():28-37. PubMed ID: 32574999 [TBL] [Abstract][Full Text] [Related]
5. Performance evaluation of deep learning image reconstruction algorithm for dual-energy spectral CT imaging: A phantom study. Li H; Li Z; Gao S; Hu J; Yang Z; Peng Y; Sun J J Xray Sci Technol; 2024; 32(3):513-528. PubMed ID: 38393883 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Image Quality and Detectability of Deep Learning Image Reconstruction (DLIR) Algorithm in Single- and Dual-energy CT. Zhong J; Shen H; Chen Y; Xia Y; Shi X; Lu W; Li J; Xing Y; Hu Y; Ge X; Ding D; Jiang Z; Yao W J Digit Imaging; 2023 Aug; 36(4):1390-1407. PubMed ID: 37071291 [TBL] [Abstract][Full Text] [Related]
7. CT Detectability of Small Low-Contrast Hypoattenuating Focal Lesions: Iterative Reconstructions versus Filtered Back Projection. Mileto A; Zamora DA; Alessio AM; Pereira C; Liu J; Bhargava P; Carnell J; Cowan SM; Dighe MK; Gunn ML; Kim S; Kolokythas O; Lee JH; Maki JH; Moshiri M; Nasrullah A; O'Malley RB; Schmiedl UP; Soloff EV; Toia GV; Wang CL; Kanal KM Radiology; 2018 Nov; 289(2):443-454. PubMed ID: 30015591 [TBL] [Abstract][Full Text] [Related]
8. Deep learning image reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of image quality and radiation dose in a phantom study. Park HJ; Choi SY; Lee JE; Lim S; Lee MH; Yi BH; Cha JG; Min JH; Lee B; Jung Y Eur Radiol; 2022 Jun; 32(6):3974-3984. PubMed ID: 35064803 [TBL] [Abstract][Full Text] [Related]
9. Image quality evaluation in deep-learning-based CT noise reduction using virtual imaging trial methods: Contrast-dependent spatial resolution. Zhou Z; Gong H; Hsieh S; McCollough CH; Yu L Med Phys; 2024 Aug; 51(8):5399-5413. PubMed ID: 38555876 [TBL] [Abstract][Full Text] [Related]
10. Detectability of Hypoattenuating Liver Lesions with Deep Learning CT Reconstruction: A Phantom and Patient Study. Cao J; Mroueh N; Mercaldo N; Lennartz S; Kongboonvijit S; Srinivas Rao S; Pisuchpen N; Baliyan V; Pierce TT; Anderson MA; Sertic M; Shenoy-Bhangle AS; Kambadakone AR Radiology; 2024 Oct; 313(1):e232749. PubMed ID: 39377679 [TBL] [Abstract][Full Text] [Related]
11. Low-contrast detectability and potential for radiation dose reduction using deep learning image reconstruction-A 20-reader study on a semi-anthropomorphic liver phantom. Njølstad T; Jensen K; Dybwad A; Salvesen Ø; Andersen HK; Schulz A Eur J Radiol Open; 2022; 9():100418. PubMed ID: 35391822 [TBL] [Abstract][Full Text] [Related]
12. Impact of noise reduction on radiation dose reduction potential of virtual monochromatic spectral images: Comparison of phantom images with conventional 120 kVp images using deep learning image reconstruction and hybrid iterative reconstruction. Masuda S; Yamada Y; Minamishima K; Owaki Y; Yamazaki A; Jinzaki M Eur J Radiol; 2022 Apr; 149():110198. PubMed ID: 35168172 [TBL] [Abstract][Full Text] [Related]
13. Deep learning imaging reconstruction of reduced-dose 40 keV virtual monoenergetic imaging for early detection of colorectal cancer liver metastases. Li S; Yuan L; Lu T; Yang X; Ren W; Wang L; Zhao J; Deng J; Liu X; Xue C; Sun Q; Zhang W; Zhou J Eur J Radiol; 2023 Nov; 168():111128. PubMed ID: 37816301 [TBL] [Abstract][Full Text] [Related]
14. A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential. Euler A; Solomon J; Marin D; Nelson RC; Samei E AJR Am J Roentgenol; 2018 Jun; 210(6):1301-1308. PubMed ID: 29702019 [TBL] [Abstract][Full Text] [Related]
15. Low-contrast lesion detection in neck CT: a multireader study comparing deep learning, iterative, and filtered back projection reconstructions using realistic phantoms. Bellmann Q; Peng Y; Genske U; Yan L; Wagner M; Jahnke P Eur Radiol Exp; 2024 Jul; 8(1):84. PubMed ID: 39046565 [TBL] [Abstract][Full Text] [Related]
16. Deep-learning image reconstruction for image quality evaluation and accurate bone mineral density measurement on quantitative CT: A phantom-patient study. Li Y; Jiang Y; Yu X; Ren B; Wang C; Chen S; Ma D; Su D; Liu H; Ren X; Yang X; Gao J; Wu Y Front Endocrinol (Lausanne); 2022; 13():884306. PubMed ID: 36034436 [TBL] [Abstract][Full Text] [Related]
17. Diagnostic performance and image quality of deep learning image reconstruction (DLIR) on unenhanced low-dose abdominal CT for urolithiasis. Delabie A; Bouzerar R; Pichois R; Desdoit X; Vial J; Renard C Acta Radiol; 2022 Sep; 63(9):1283-1292. PubMed ID: 34365803 [TBL] [Abstract][Full Text] [Related]
18. A Characterization of Deep Learning Reconstruction Applied to Dual-Energy Computed Tomography Monochromatic and Material Basis Images. Nikolau EP; Toia GV; Nett B; Tang J; Szczykutowicz TP J Comput Assist Tomogr; 2023 May-Jun 01; 47(3):437-444. PubMed ID: 37185008 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Jiang B; Li N; Shi X; Zhang S; Li J; de Bock GH; Vliegenthart R; Xie X Radiology; 2022 Apr; 303(1):202-212. PubMed ID: 35040674 [TBL] [Abstract][Full Text] [Related]
20. Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm. Solomon J; Lyu P; Marin D; Samei E Med Phys; 2020 Sep; 47(9):3961-3971. PubMed ID: 32506661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]