These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36129821)

  • 1. Reconstructing cancer phylogenies using Pairtree, a clone tree reconstruction algorithm.
    Kulman E; Wintersinger J; Morris Q
    STAR Protoc; 2022 Dec; 3(4):101706. PubMed ID: 36129821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing Complex Cancer Evolutionary Histories from Multiple Bulk DNA Samples Using Pairtree.
    Wintersinger JA; Dobson SM; Kulman E; Stein LD; Dick JE; Morris Q
    Blood Cancer Discov; 2022 May; 3(3):208-219. PubMed ID: 35247876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing tumor evolutionary histories and clone trees in polynomial-time with SubMARine.
    Sundermann LK; Wintersinger J; Rätsch G; Stoye J; Morris Q
    PLoS Comput Biol; 2021 Jan; 17(1):e1008400. PubMed ID: 33465079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BAMSE: Bayesian model selection for tumor phylogeny inference among multiple samples.
    Toosi H; Moeini A; Hajirasouliha I
    BMC Bioinformatics; 2019 Jun; 20(Suppl 11):282. PubMed ID: 31167637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors.
    Deshwar AG; Vembu S; Yung CK; Jang GH; Stein L; Morris Q
    Genome Biol; 2015 Feb; 16(1):35. PubMed ID: 25786235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weighted centroid trees: a general approach to summarize phylogenies in single-labeled tumor mutation tree inference.
    Vasei H; Foroughmand-Araabi MH; Daneshgar A
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38984735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring clonal evolution of tumors from single nucleotide somatic mutations.
    Jiao W; Vembu S; Deshwar AG; Stein L; Morris Q
    BMC Bioinformatics; 2014 Feb; 15():35. PubMed ID: 24484323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SubClonal Hierarchy Inference from Somatic Mutations: Automatic Reconstruction of Cancer Evolutionary Trees from Multi-region Next Generation Sequencing.
    Niknafs N; Beleva-Guthrie V; Naiman DQ; Karchin R
    PLoS Comput Biol; 2015 Oct; 11(10):e1004416. PubMed ID: 26436540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing algorithms that reconstruct cell lineage trees utilizing information on microsatellite mutations.
    Chapal-Ilani N; Maruvka YE; Spiro A; Reizel Y; Adar R; Shlush LI; Shapiro E
    PLoS Comput Biol; 2013; 9(11):e1003297. PubMed ID: 24244121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing phylogenetic trees from genome-wide somatic mutations in clonal samples.
    Coorens THH; Spencer Chapman M; Williams N; Martincorena I; Stratton MR; Nangalia J; Campbell PJ
    Nat Protoc; 2024 Jun; 19(6):1866-1886. PubMed ID: 38396041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors.
    Zheng L; Niknafs N; Wood LD; Karchin R; Scharpf RB
    Bioinformatics; 2022 Aug; 38(15):3677-3683. PubMed ID: 35642899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast tool for minimum hybridization networks.
    Chen ZZ; Wang L; Yamanaka S
    BMC Bioinformatics; 2012 Jul; 13():155. PubMed ID: 22748099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using LICHeE and BAMSE for Reconstructing Cancer Phylogenetic Trees.
    Ricketts C; Popic V; Toosi H; Hajirasouliha I
    Curr Protoc Bioinformatics; 2018 Jun; 62(1):e49. PubMed ID: 29927069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A community effort to create standards for evaluating tumor subclonal reconstruction.
    Salcedo A; Tarabichi M; Espiritu SMG; Deshwar AG; David M; Wilson NM; Dentro S; Wintersinger JA; Liu LY; Ko M; Sivanandan S; Zhang H; Zhu K; Ou Yang TH; Chilton JM; Buchanan A; Lalansingh CM; P'ng C; Anghel CV; Umar I; Lo B; Zou W; ; Simpson JT; Stuart JM; Anastassiou D; Guan Y; Ewing AD; Ellrott K; Wedge DC; Morris Q; Van Loo P; Boutros PC
    Nat Biotechnol; 2020 Jan; 38(1):97-107. PubMed ID: 31919445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invariant transformers of Robinson and Foulds distance matrices for Convolutional Neural Network.
    Tahiri N; Veriga A; Koshkarov A; Morozov B
    J Bioinform Comput Biol; 2022 Aug; 20(4):2250012. PubMed ID: 35798684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and practice.
    Sridhar S; Dhamdhere K; Blelloch G; Halperin E; Ravi R; Schwartz R
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):561-71. PubMed ID: 17975268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the influence of mutation detection on tumour subclonal reconstruction.
    Liu LY; Bhandari V; Salcedo A; Espiritu SMG; Morris QD; Kislinger T; Boutros PC
    Nat Commun; 2020 Dec; 11(1):6247. PubMed ID: 33288765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-neighbor-joining approach for phylogenetic tree reconstruction and visualization.
    Silva AE; Villanueva WJ; Knidel H; Bonato VC; Reis SF; Von Zuben FJ
    Genet Mol Res; 2005 Sep; 4(3):525-34. PubMed ID: 16342037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sequential Monte Carlo algorithm for inference of subclonal structure in cancer.
    Ogundijo OE; Zhu K; Wang X; Anastassiou D
    PLoS One; 2019; 14(1):e0211213. PubMed ID: 30682127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidemic Reconstruction in a Phylogenetics Framework: Transmission Trees as Partitions of the Node Set.
    Hall M; Woolhouse M; Rambaut A
    PLoS Comput Biol; 2015 Dec; 11(12):e1004613. PubMed ID: 26717515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.