BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36129848)

  • 1. Effect of alfalfa on subsurface (tile) nitrogen and phosphorus loss in Ohio, USA.
    Arrueta LD; Hanrahan B; King K; Kalcic M
    J Environ Qual; 2022 Nov; 51(6):1181-1197. PubMed ID: 36129848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cover crops differentially influenced nitrogen and phosphorus loss in tile drainage and surface runoff from agricultural fields in Ohio, USA.
    Hanrahan BR; King KW; Duncan EW; Shedekar VS
    J Environ Manage; 2021 Sep; 293():112910. PubMed ID: 34098350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subsurface phosphorus and nitrogen loss following liquid dairy manure and commercial fertilizer application on a clay soil in northwest Ohio.
    King KW; Hanrahan BR; LaBarge GA; Stinner JH; Rumora K
    J Environ Qual; 2023; 52(4):859-872. PubMed ID: 36971335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crop growth, hydrology, and water quality dynamics in agricultural fields across the Western Lake Erie Basin: Multi-site verification of the Nutrient Tracking Tool (NTT).
    Guo T; Confesor R; Saleh A; King K
    Sci Total Environ; 2020 Jul; 726():138485. PubMed ID: 32315850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field-scale nutrient loss assessment following cover crop and manure rate change.
    Askar MH; Hanrahan BR; King KW; Stinner JH
    J Environ Manage; 2023 Jul; 337():117709. PubMed ID: 36989919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and assessing water and nutrient balances in a tile-drained agricultural watershed in the U.S. Corn Belt.
    Ren D; Engel B; Mercado JAV; Guo T; Liu Y; Huang G
    Water Res; 2022 Feb; 210():117976. PubMed ID: 34953214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.
    Kaspar TC; Jaynes DB; Parkin TB; Moorman TB
    J Environ Qual; 2007; 36(5):1503-11. PubMed ID: 17766830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.
    Strock JS; Porter PM; Russelle MP
    J Environ Qual; 2004; 33(3):1010-6. PubMed ID: 15224938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed depressions and soil phosphorus influence subsurface phosphorus losses in a tile-drained field in Illinois.
    Andino LF; Gentry LE; Fraterrigo JM
    J Environ Qual; 2020 Sep; 49(5):1273-1285. PubMed ID: 33016436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of nitrogen fertilizer timing on nitrate loss and crop production in northwest Iowa.
    Waring ER; Sawyer J; Pederson C; Helmers M
    J Environ Qual; 2022 Jul; 51(4):696-707. PubMed ID: 35522457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crop improvement influences on water quantity and quality processes in an agricultural watershed.
    Ren D; Engel B; Tuinstra MR
    Water Res; 2022 Jun; 217():118353. PubMed ID: 35405549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EPIC tile flow and nitrate loss predictions for three Minnesota cropping systems.
    Chung SW; Gassman PW; Huggins DR; Randall GW
    J Environ Qual; 2001; 30(3):822-30. PubMed ID: 11401271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alfalfa in rotation with annual crops reduced nitrate leaching potential.
    Singh A; Afzal T; Woodbury B; Wortmann C; Iqbal J
    J Environ Qual; 2023; 52(4):930-938. PubMed ID: 36863311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Legacy phosphorus concentration-discharge relationships in surface runoff and tile drainage from Ohio crop fields.
    Osterholz WR; Hanrahan BR; King KW
    J Environ Qual; 2020 May; 49(3):675-687. PubMed ID: 33016383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Midwestern cropping system effects on drainage water quality and crop yields.
    Dougherty BW; Pederson CH; Mallarino AP; Andersen DS; Soupir ML; Kanwar RS; Helmers MJ
    J Environ Qual; 2020 Jan; 49(1):38-49. PubMed ID: 33016359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient losses over time via surface runoff and subsurface drainage from an agricultural field in northern Sweden.
    Norberg L; Linefur H; Andersson S; Blomberg M; Kyllmar K
    J Environ Qual; 2022 Nov; 51(6):1235-1245. PubMed ID: 36099508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controls on subsurface nitrate and dissolved reactive phosphorus losses from agricultural fields during precipitation-driven events.
    Hanrahan BR; King KW; Williams MR
    Sci Total Environ; 2021 Feb; 754():142047. PubMed ID: 33254852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agricultural intensification leads to higher nitrate levels in Lake Ontario tributaries.
    Liu FS; Lockett BR; Sorichetti RJ; Watmough SA; Eimers MC
    Sci Total Environ; 2022 Jul; 830():154534. PubMed ID: 35304140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient loss from floodplain soil with controlled subsurface drainage under forage production.
    Nash PR; Singh G; Nelson KA
    J Environ Qual; 2020 Jul; 49(4):1000-1010. PubMed ID: 33016497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrate losses in subsurface drainage from a corn-soybean rotation as affected by time of nitrogen application and use of nitrapyrin.
    Randall GW; Vetsch JA; Huffman JR
    J Environ Qual; 2003; 32(5):1764-72. PubMed ID: 14535319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.