These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36130044)

  • 1. Evaluation of Topology Optimization Using 3D Printing for Bioresorbable Fusion Cages: A Biomechanical Study in a Porcine Model.
    Ho NC; Hollister SJ; Agrawal V; Flanagan CL; Lee C; Wheeler MB; Wang H; Ebramzadeh E; Sangiorgio SN
    Spine (Phila Pa 1976); 2023 Feb; 48(4):E46-E53. PubMed ID: 36130044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Experimental fusion of the sheep cervical spine. Part II: Effect of growth factors and carrier systems on interbody fusion].
    Kandziora F; Scholz M; Pflugmacher R; Krummrey G; Schollmeier G; Schmidmaier G; Schnake KJ; Duda G; Raschke M; Haas NP
    Chirurg; 2002 Oct; 73(10):1025-38. PubMed ID: 12395162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioabsorbable interbody cages in a sheep cervical spine fusion model.
    Kandziora F; Pflugmacher R; Scholz M; Eindorf T; Schnake KJ; Haas NP
    Spine (Phila Pa 1976); 2004 Sep; 29(17):1845-55; discussion 1856. PubMed ID: 15534403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone morphogenetic protein-2 application by a poly(D,L-lactide)-coated interbody cage: in vivo results of a new carrier for growth factors.
    Kandziora F; Bail H; Schmidmaier G; Schollmeier G; Scholz M; Knispel C; Hiller T; Pflugmacher R; Mittlmeier T; Raschke M; Haas NP
    J Neurosurg; 2002 Jul; 97(1 Suppl):40-8. PubMed ID: 12120650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices.
    Knutsen AR; Borkowski SL; Ebramzadeh E; Flanagan CL; Hollister SJ; Sangiorgio SN
    J Mech Behav Biomed Mater; 2015 Sep; 49():332-42. PubMed ID: 26072198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of a stand-alone interbody fusion cage based on a novel porous TiO2/glass ceramic--2: Biomechanical evaluation after implantation in the sheep cervical spine].
    Korinth MC; Hero T; Pandorf T; Zell D
    Biomed Tech (Berl); 2005 Apr; 50(4):111-8. PubMed ID: 15884708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical comparison of bioabsorbable cervical spine interbody fusion cages.
    Pflugmacher R; Schleicher P; Gumnior S; Turan O; Scholz M; Eindorf T; Haas NP; Kandziora F
    Spine (Phila Pa 1976); 2004 Aug; 29(16):1717-22. PubMed ID: 15303013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IGF-I and TGF-beta1 application by a poly-(D,L-lactide)-coated cage promotes intervertebral bone matrix formation in the sheep cervical spine.
    Kandziora F; Schmidmaier G; Schollmeier G; Bail H; Pflugmacher R; Görke T; Wagner M; Raschke M; Mittlmeier T; Haas NP
    Spine (Phila Pa 1976); 2002 Aug; 27(16):1710-23. PubMed ID: 12195060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of BMP-2 and combined IGF-I/TGF-ss1 application in a sheep cervical spine fusion model.
    Kandziora F; Pflugmacher R; Scholz M; Knispel C; Hiller T; Schollmeier G; Bail H; Schmidmaier G; Duda G; Raschke M; Haas NP
    Eur Spine J; 2002 Oct; 11(5):482-93. PubMed ID: 12384758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioabsorbable interbody magnesium-polymer cage: degradation kinetics, biomechanical stiffness, and histological findings from an ovine cervical spine fusion model.
    Daentzer D; Willbold E; Kalla K; Bartsch I; Masalha W; Hallbaum M; Hurschler C; Kauth T; Kaltbeitzel D; Hopmann C; Welke B
    Spine (Phila Pa 1976); 2014 Sep; 39(20):E1220-7. PubMed ID: 25010099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical Evaluation of a Novel S-Type, Dynamic Zero-Profile Cage Design for Anterior Cervical Discectomy and Fusion with Variations in Bone Graft Shape: A Finite Element Analysis.
    Manickam PS; Roy S; Shetty GM
    World Neurosurg; 2021 Oct; 154():e199-e214. PubMed ID: 34246827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A lattice topology optimization of cervical interbody fusion cage and finite element comparison with ZK60 and Ti-6Al-4V cages.
    Sun J; Wang Q; Cai D; Gu W; Ma Y; Sun Y; Wei Y; Yuan F
    BMC Musculoskelet Disord; 2021 Apr; 22(1):390. PubMed ID: 33902500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model.
    McGilvray KC; Easley J; Seim HB; Regan D; Berven SH; Hsu WK; Mroz TE; Puttlitz CM
    Spine J; 2018 Jul; 18(7):1250-1260. PubMed ID: 29496624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of bioabsorbable multiamino acid copolymer/α-tri-calcium phosphate interbody fusion cages in a goat model.
    Chunguang Z; Yueming S; Chongqi T; Hong D; Fuxing P; Yonggang Y; Hong L
    Spine (Phila Pa 1976); 2011 Dec; 36(25):E1615-22. PubMed ID: 21270683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanics of an integrated interbody device versus ACDF anterior locking plate in a single-level cervical spine fusion construct.
    Stein MI; Nayak AN; Gaskins RB; Cabezas AF; Santoni BG; Castellvi AE
    Spine J; 2014 Jan; 14(1):128-36. PubMed ID: 24231054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Bioabsorbable Multiamino Acid Copolymer/Nanohydroxyapatite/Calcium Sulfate Cage in a Goat Spine Model.
    Ren C; Song Y; Xue Y; Yang X; Zhou C
    World Neurosurg; 2017 Jul; 103():341-347. PubMed ID: 28408260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can an Endplate-conformed Cervical Cage Provide a Better Biomechanical Environment than a Typical Non-conformed Cage?: A Finite Element Model and Cadaver Study.
    Zhang F; Xu HC; Yin B; Xia XL; Ma XS; Wang HL; Yin J; Shao MH; Lyu FZ; Jiang JY
    Orthop Surg; 2016 Aug; 8(3):367-76. PubMed ID: 27627721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of Segmental Stability of Goat Cervical Spine with Poly (D, L-lactic acid) Cage.
    Li XH; Song YM; Duan H
    Orthop Surg; 2015 Aug; 7(3):266-72. PubMed ID: 26311103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioabsorbable self-retaining PLA/nano-sized β-TCP cervical spine interbody fusion cage in goat models: an in vivo study.
    Cao L; Chen Q; Jiang LB; Yin XF; Bian C; Wang HR; Ma YQ; Li XQ; Li XL; Dong J
    Int J Nanomedicine; 2017; 12():7197-7205. PubMed ID: 29042769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical comparison of cervical spine interbody fusion cages.
    Kandziora F; Pflugmacher R; Schäfer J; Born C; Duda G; Haas NP; Mittlmeier T
    Spine (Phila Pa 1976); 2001 Sep; 26(17):1850-7. PubMed ID: 11568693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.