These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36130105)

  • 1. Copper Collector Generated Cu
    Zhang G; Liu X; Wang L; Xing G; Tian C; Fu H
    ACS Nano; 2022 Oct; 16(10):17139-17148. PubMed ID: 36130105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Robust Hybrid Zn-Battery with Ultralong Cycle Life.
    Li B; Quan J; Loh A; Chai J; Chen Y; Tan C; Ge X; Hor TS; Liu Z; Zhang H; Zong Y
    Nano Lett; 2017 Jan; 17(1):156-163. PubMed ID: 27936783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic tuning of Ni-Fe-Co oxide/hydroxide as highly active electrocatalyst for rechargeable Zn-air batteries.
    Guo X; Zhang X; Wu Y; Xin Y; Li D; Zhang Y; Yu P
    Dalton Trans; 2023 Apr; 52(14):4315-4322. PubMed ID: 36779278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimetallic Nickel Cobalt Sulfide as Efficient Electrocatalyst for Zn-Air Battery and Water Splitting.
    Zhang J; Bai X; Wang T; Xiao W; Xi P; Wang J; Gao D; Wang J
    Nanomicro Lett; 2019; 11(1):2. PubMed ID: 30687731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Bifunctional Oxygen Electrocatalytic Properties of Core-Shell Co
    Guo X; Hu X; Wu D; Jing C; Liu W; Ren Z; Zhao Q; Jiang X; Xu C; Zhang Y; Hu N
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21506-21514. PubMed ID: 31124648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic-self-catalysis as an accelerated air-cathode for rechargeable near-neutral Zn-air batteries with ultrahigh energy efficiency.
    Zhang T; Lim XF; Zhang S; Zheng J; Liu X; Lee JY
    Mater Horiz; 2023 Jul; 10(8):2958-2967. PubMed ID: 37166133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Spatial Combination of CN Vacancy-Mediated NiFe-PBA with N-Doped Carbon Nanofibers Network Toward Free-Standing Bifunctional Electrode for Zn-Air Batteries.
    Lai C; Li H; Sheng Y; Zhou M; Wang W; Gong M; Wang K; Jiang K
    Adv Sci (Weinh); 2022 Apr; 9(11):e2105925. PubMed ID: 35191617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NiMOF-derived oxygen vacancy rich NiO with excellent capacitance and ORR/OER activities as a cathode material for Zn-based hybrid batteries.
    Xu D; Huang Q; Xu X; Sang X
    Dalton Trans; 2020 Sep; 49(35):12441-12449. PubMed ID: 32852016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric Electrode Design for High-Area Capacity and High-Energy Efficiency Hybrid Zn Batteries.
    Ma Y; Zhao Z; Cui Y; Yu J; Tan P
    Small; 2024 Apr; 20(16):e2308500. PubMed ID: 38032167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co Nanoislands Rooted on Co-N-C Nanosheets as Efficient Oxygen Electrocatalyst for Zn-Air Batteries.
    Yu P; Wang L; Sun F; Xie Y; Liu X; Ma J; Wang X; Tian C; Li J; Fu H
    Adv Mater; 2019 Jul; 31(30):e1901666. PubMed ID: 31169937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Active Bifunctional Electrocatalysts for Oxygen Evolution and Reduction in Zn-Air Batteries.
    Kim SW; Son Y; Choi K; Kim SI; Son Y; Park J; Lee JH; Jang JH
    ChemSusChem; 2018 Dec; 11(24):4203-4208. PubMed ID: 30381898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Organic Frameworks (MOFs) Derived Materials Used in Zn-Air Battery.
    Song D; Hu C; Gao Z; Yang B; Li Q; Zhan X; Tong X; Tian J
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Waterproof Rechargeable Hybrid Zinc Batteries Initiated by Multifunctional Oxygen Vacancies-Rich Cobalt Oxide.
    Ma L; Chen S; Pei Z; Li H; Wang Z; Liu Z; Tang Z; Zapien JA; Zhi C
    ACS Nano; 2018 Aug; 12(8):8597-8605. PubMed ID: 30040383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast-Charging Zn-Air Batteries with Long Lifetime Enabled by Reconstructed Amorphous Multi-Metallic Sulfide.
    Wang A; Zhang X; Gao S; Zhao C; Kuang S; Lu S; Niu J; Wang G; Li W; Chen D; Zhang H; Zhou X; Zhang S; Zhang B; Wang W
    Adv Mater; 2022 Dec; 34(49):e2204247. PubMed ID: 36177691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Power-Density Rechargeable Hybrid Alkali/Acid Zn-Air Battery Performance Through Value-Added Conversion Charging.
    Yin X; Sun W; Chen K; Lu Z; Chen J; Cai P; Wen Z
    Adv Sci (Weinh); 2024 Jun; 11(23):e2402343. PubMed ID: 38572506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CoNi Nanoparticles Supported on N-Doped Bifunctional Hollow Carbon Composites as High-Performance ORR/OER Catalysts for Rechargeable Zn-Air Batteries.
    Sheng K; Yi Q; Chen AL; Wang Y; Yan Y; Nie H; Zhou X
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45394-45405. PubMed ID: 34519493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition Metal (Co, Ni, Fe, Cu) Single-Atom Catalysts Anchored on 3D Nitrogen-Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn-Air Battery.
    Zhang M; Li H; Chen J; Ma FX; Zhen L; Wen Z; Xu CY
    Small; 2022 Aug; 18(34):e2202476. PubMed ID: 35905493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rechargeable Zn-Air Batteries with Outstanding Cycling Stability Enabled by Ultrafine FeNi Nanoparticles-Encapsulated N-Doped Carbon Nanosheets as a Bifunctional Electrocatalyst.
    Li X; Liu Y; Chen H; Yang M; Yang D; Li H; Lin Z
    Nano Lett; 2021 Apr; 21(7):3098-3105. PubMed ID: 33819042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Janus Hollow Nanofiber with Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Battery.
    Chen X; Pu J; Hu X; Yao Y; Dou Y; Jiang J; Zhang W
    Small; 2022 Apr; 18(16):e2200578. PubMed ID: 35304814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Anchoring Co-N-C Nanoparticles on Co
    Liu T; Zhao S; Wang Y; Yu J; Dai Y; Wang J; Sun X; Liu K; Ni M
    Small; 2022 Feb; 18(7):e2105887. PubMed ID: 34889520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.