BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36130519)

  • 1. Erythropoietin-driven dynamic proteome adaptations during erythropoiesis prevent iron overload in the developing embryo.
    Chakraborty S; Andrieux G; Kastl P; Adlung L; Altamura S; Boehm ME; Schwarzmüller LE; Abdullah Y; Wagner MC; Helm B; Gröne HJ; Lehmann WD; Boerries M; Busch H; Muckenthaler MU; Schilling M; Klingmüller U
    Cell Rep; 2022 Sep; 40(12):111360. PubMed ID: 36130519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship of erythropoietin and iron metabolism to red blood cell production in humans.
    Adamson JW
    Semin Oncol; 1994 Apr; 21(2 Suppl 3):9-15. PubMed ID: 8202725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity.
    Yien YY; Shi J; Chen C; Cheung JTM; Grillo AS; Shrestha R; Li L; Zhang X; Kafina MD; Kingsley PD; King MJ; Ablain J; Li H; Zon LI; Palis J; Burke MD; Bauer DE; Orkin SH; Koehler CM; Phillips JD; Kaplan J; Ward DM; Lodish HF; Paw BH
    J Biol Chem; 2018 Dec; 293(51):19797-19811. PubMed ID: 30366982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development.
    Yoon D; Pastore YD; Divoky V; Liu E; Mlodnicka AE; Rainey K; Ponka P; Semenza GL; Schumacher A; Prchal JT
    J Biol Chem; 2006 Sep; 281(35):25703-11. PubMed ID: 16787915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of cytokine signaling molecules in erythroid differentiation of mouse fetal liver hematopoietic cells: functional analysis of signaling molecules by retrovirus-mediated expression.
    Chida D; Miura O; Yoshimura A; Miyajima A
    Blood; 1999 Mar; 93(5):1567-78. PubMed ID: 10029585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cadmium on in vitro and in vivo erythropoiesis: erythroid progenitor cells (CFU-E), iron, and erythropoietin in cadmium-induced iron deficiency anemia.
    Sakata S; Iwami K; Enoki Y; Kohzuki H; Shimizu S; Matsuda M; Moriyama T
    Exp Hematol; 1988 Aug; 16(7):581-7. PubMed ID: 3391251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human granulocyte-macrophage colony-stimulating factor (hGM-CSF) stimulates primitive and definitive erythropoiesis in mouse embryos expressing hGM-CSF receptors but not erythropoietin receptors.
    Hisakawa H; Sugiyama D; Nishijima I; Xu MJ; Wu H; Nakao K; Watanabe S; Katsuki M; Asano S; Arai K; Nakahata T; Tsuji K
    Blood; 2001 Dec; 98(13):3618-25. PubMed ID: 11739165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrahepatic deficiency of transferrin receptor 2 is associated with increased erythropoiesis independent of iron overload.
    Wortham AM; Goldman DC; Chen J; Fleming WH; Zhang AS; Enns CA
    J Biol Chem; 2020 Mar; 295(12):3906-3917. PubMed ID: 32054685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor.
    Wu H; Liu X; Jaenisch R; Lodish HF
    Cell; 1995 Oct; 83(1):59-67. PubMed ID: 7553874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of human recombinant erythropoietin on differentiation and distribution of erythroid progenitor cells on murine medullary and splenic erythropoiesis during hypoxia and post-hypoxia.
    Mide SM; Huygens P; Bozzini CE; Fernandez Pol JA
    In Vivo; 2001; 15(2):125-32. PubMed ID: 11317516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis.
    Lin CS; Lim SK; D'Agati V; Costantini F
    Genes Dev; 1996 Jan; 10(2):154-64. PubMed ID: 8566749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dominant negative effect of a truncated erythropoietin receptor (EPOR-T) on erythropoietin-induced erythroid differentiation: possible involvement of EPOR-T in ineffective erythropoiesis of myelodysplastic syndrome.
    Shimizu R; Komatsu N; Miura Y
    Exp Hematol; 1999 Feb; 27(2):229-33. PubMed ID: 10029161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of erythropoiesis and myelopoiesis by exogenous erythropoietin in human long-term marrow cultures.
    Mayani H; Guilbert LJ; Janowska-Wieczorek A
    Exp Hematol; 1990 Mar; 18(3):174-9. PubMed ID: 2303109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Tumor Necrosis Factor-Alpha on Erythropoietin and Erythropoietin Receptor-Induced Erythroid Progenitor Cell Proliferation in β-Thalassemia/Hemoglobin E Patients.
    Tanyong DI; Panichob P; Kheansaard W; Fucharoen S
    Turk J Haematol; 2015 Dec; 32(4):304-10. PubMed ID: 26376749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythropoietin, iron metabolism, and red blood cell production.
    Adamson J
    Semin Hematol; 1996 Apr; 33(2 Suppl 2):5-7; discussion 8-9. PubMed ID: 8723573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways.
    Tong W; Zhang J; Lodish HF
    Blood; 2005 Jun; 105(12):4604-12. PubMed ID: 15705783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel role for STAT1 in regulating murine erythropoiesis: deletion of STAT1 results in overall reduction of erythroid progenitors and alters their distribution.
    Halupa A; Bailey ML; Huang K; Iscove NN; Levy DE; Barber DL
    Blood; 2005 Jan; 105(2):552-61. PubMed ID: 15213094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed hemoglobin switching and perinatal neocytolysis in mice with gain-of-function erythropoietin receptor.
    Divoky V; Song J; Horvathova M; Kralova B; Votavova H; Prchal JT; Yoon D
    J Mol Med (Berl); 2016 May; 94(5):597-608. PubMed ID: 26706855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron-loaded transferrin potentiates erythropoietin effects on erythroblast proliferation and survival: a novel role through transferrin receptors.
    Fouquet G; Thongsa-Ad U; Lefevre C; Rousseau A; Tanhuad N; Khongkla E; Saengsawang W; Anurathapan U; Hongeng S; Maciel TT; Hermine O; Bhukhai K
    Exp Hematol; 2021 Jul; 99():12-20.e3. PubMed ID: 34077792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythropoietin controls heme metabolic enzymes in normal human bone marrow culture.
    Abraham NG; Nelson JC; Ahmed T; Konwalinka G; Levere RD
    Exp Hematol; 1989 Sep; 17(8):908-13. PubMed ID: 2767184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.