BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36130596)

  • 1. DNA-PKcs promotes fork reversal and chemoresistance.
    Dibitetto D; Marshall S; Sanchi A; Liptay M; Badar J; Lopes M; Rottenberg S; Smolka MB
    Mol Cell; 2022 Oct; 82(20):3932-3942.e6. PubMed ID: 36130596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours.
    Dibitetto D; Liptay M; Vivalda F; Dogan H; Gogola E; González Fernández M; Duarte A; Schmid JA; Decollogny M; Francica P; Przetocka S; Durant ST; Forment JV; Klebic I; Siffert M; de Bruijn R; Kousholt AN; Marti NA; Dettwiler M; Sørensen CS; Tille JC; Undurraga M; Labidi-Galy I; Lopes M; Sartori AA; Jonkers J; Rottenberg S
    Nat Commun; 2024 May; 15(1):4430. PubMed ID: 38789420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flap endonuclease 1 and DNA-PKcs synergistically participate in stabilizing replication fork to encounter replication stress in glioma cells.
    Zhang J; Chen M; Pang Y; Cheng M; Huang B; Xu S; Liu M; Lian H; Zhong C
    J Exp Clin Cancer Res; 2022 Apr; 41(1):140. PubMed ID: 35414100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cockayne syndrome group B protein regulates fork restart, fork progression and MRE11-dependent fork degradation in BRCA1/2-deficient cells.
    Batenburg NL; Mersaoui SY; Walker JR; Coulombe Y; Hammond-Martel I; Wurtele H; Masson JY; Zhu XD
    Nucleic Acids Res; 2021 Dec; 49(22):12836-12854. PubMed ID: 34871413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication fork stability confers chemoresistance in BRCA-deficient cells.
    Ray Chaudhuri A; Callen E; Ding X; Gogola E; Duarte AA; Lee JE; Wong N; Lafarga V; Calvo JA; Panzarino NJ; John S; Day A; Crespo AV; Shen B; Starnes LM; de Ruiter JR; Daniel JA; Konstantinopoulos PA; Cortez D; Cantor SB; Fernandez-Capetillo O; Ge K; Jonkers J; Rottenberg S; Sharan SK; Nussenzweig A
    Nature; 2016 Jul; 535(7612):382-7. PubMed ID: 27443740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering the role of distinct DNA-PK phosphorylations at collapsed replication forks.
    Neal JA; Dunger K; Geith K; Meek K
    DNA Repair (Amst); 2020 Oct; 94():102925. PubMed ID: 32674014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RADX Promotes Genome Stability and Modulates Chemosensitivity by Regulating RAD51 at Replication Forks.
    Dungrawala H; Bhat KP; Le Meur R; Chazin WJ; Ding X; Sharan SK; Wessel SR; Sathe AA; Zhao R; Cortez D
    Mol Cell; 2017 Aug; 67(3):374-386.e5. PubMed ID: 28735897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RADX prevents genome instability by confining replication fork reversal to stalled forks.
    Krishnamoorthy A; Jackson J; Mohamed T; Adolph M; Vindigni A; Cortez D
    Mol Cell; 2021 Jul; 81(14):3007-3017.e5. PubMed ID: 34107305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-PKcs-dependent phosphorylation of RECQL4 promotes NHEJ by stabilizing the NHEJ machinery at DNA double-strand breaks.
    Lu H; Guan J; Wang SY; Li GM; Bohr VA; Davis AJ
    Nucleic Acids Res; 2022 Jun; 50(10):5635-5651. PubMed ID: 35580045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-homologous end-joining at challenged replication forks: an RNA connection?
    Audoynaud C; Vagner S; Lambert S
    Trends Genet; 2021 Nov; 37(11):973-985. PubMed ID: 34238592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. More forks on the road to replication stress recovery.
    Allen C; Ashley AK; Hromas R; Nickoloff JA
    J Mol Cell Biol; 2011 Feb; 3(1):4-12. PubMed ID: 21278446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rad51 recruitment and exclusion of non-homologous end joining during homologous recombination at a Tus/Ter mammalian replication fork barrier.
    Willis NA; Panday A; Duffey EE; Scully R
    PLoS Genet; 2018 Jul; 14(7):e1007486. PubMed ID: 30024881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical evidence for Ku-independent backup pathways of NHEJ.
    Wang H; Perrault AR; Takeda Y; Qin W; Wang H; Iliakis G
    Nucleic Acids Res; 2003 Sep; 31(18):5377-88. PubMed ID: 12954774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RIF1 Links Replication Timing with Fork Reactivation and DNA Double-Strand Break Repair.
    Blasiak J; Szczepańska J; Sobczuk A; Fila M; Pawlowska E
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TIP60 K430 SUMOylation attenuates its interaction with DNA-PKcs in S-phase cells: Facilitating homologous recombination and emerging target for cancer therapy.
    Gao SS; Guan H; Yan S; Hu S; Song M; Guo ZP; Xie DF; Liu Y; Liu X; Zhang S; Zhou PK
    Sci Adv; 2020 Jul; 6(28):eaba7822. PubMed ID: 32832608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-PK is activated by SIRT2 deacetylation to promote DNA double-strand break repair by non-homologous end joining.
    Head PE; Kapoor-Vazirani P; Nagaraju GP; Zhang H; Rath SK; Luong NC; Haji-Seyed-Javadi R; Sesay F; Wang SY; Duong DM; Daddacha W; Minten EV; Song B; Danelia D; Liu X; Li S; Ortlund EA; Seyfried NT; Smalley DM; Wang Y; Deng X; Dynan WS; El-Rayes B; Davis AJ; Yu DS
    Nucleic Acids Res; 2023 Aug; 51(15):7972-7987. PubMed ID: 37395399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haploinsufficiency of ZNF251 causes DNA-PKcs-dependent resistance to PARP inhibitors in BRCA1-mutated cancer cells.
    Li H; Chatla S; Liu X; Vekariya U; Kim D; Walt M; Lian Z; Morton G; Feng Z; Yang D; Liu H; Reed K; Childers W; Yu X; Madzo J; Chitrala KN; Skorski T; Huang J
    Res Sq; 2023 Apr; ():. PubMed ID: 37066268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.